UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc.

M.Sci.

Mathematics M12B: Algebra 2

COURSE CODE : MATHM12B

UNIT VALUE

: 0.50

DATE

: 16-MAY-06

TIME

: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Give the definition of a *group*, defining the terms you use. Prove that in any group the identity element is unique, and each element has a unique inverse.
 - (b) Determine whether or not the following sets G under the given operation \star are groups, justifying your answer:

(i)
$$G = \mathbb{R} - \{-2\}, a \star b = ab + 2a + 2b + 2,$$

(ii)
$$G = \mathbb{R}$$
, $a \star b = a - b$,

(iii)
$$G = \{x \in \mathbb{R} : x \ge 0\}, \ a \star b = +\sqrt{a^2 + b^2}.$$

- 2. (a) State (do not prove) Lagrange's Theorem. Hence prove that in a finite group G the order of any element divides the order of the group.
 - (b) Deduce that for any prime p if $a \not\equiv 0 \pmod{p}$ then $a^{p-1} \equiv 1 \pmod{p}$.
 - (c) Find 2^{3599} (mod 37).
 - (d) Find an number x such that $x^7 \equiv 2 \pmod{37}$
- 3. (a) Stating clearly any results you use, prove that for any two $n \times n$ matrices A and B, $\det(AB) = \det(A) \det(B)$.
 - (b) Find det $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, expressing your answer as a product of linear factors.

MATHM12B

PLEASE TURN OVER

- 4. (a) Let A be an $n \times n$ matrix over \mathbb{R} . Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector corresponding to λ ;
 - (iii) the eigenspace E_{λ} of A;
 - (iv) A is diagonalizable (over \mathbb{R}). State (do not prove) the basic criterion for a matrix to be diagonalisable.
 - (b) Let λ_i (i = 1, ..., r) be the distinct eigenvalues of A; prove that the sum $\sum_{i=1}^{r} E_{\lambda_i}$ is direct. Deduce that if $\sum_{i=1}^{r} \dim(E_{\lambda_i}) = n$ then A is diagonalisable.
 - (c) Prove that the following matrix is diagonalisable:

$$\begin{pmatrix} 2 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 & 0 & -2 & -2 \end{pmatrix}$$

- 5. Let $A = \begin{pmatrix} 3/2 & -1 \\ 1/2 & 0 \end{pmatrix}$.
 - (i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
 - (ii) Find A^n for $n \in \mathbb{N}$
 - (iii) Solve the system of difference equations

$$\begin{array}{rcl} x_{n+1} & = & \frac{3}{2}x_n & - & y_n \\ y_{n+1} & = & \frac{1}{2}x_n \end{array}$$

given that $x_0 = 0$, $y_0 = 1$.

Find the limit, as $n \longrightarrow \infty$ of x_n .

MATHM12B

CONTINUED

- 6. (a) Let A be a real symmetric matrix and let \mathbf{u} , \mathbf{v} be eigenvectors associated to the (real) eigenvalues λ and μ respectively, where $\lambda \neq \mu$. Prove that \mathbf{u} and \mathbf{v} are orthogonal vectors.
 - (b) Let $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Find an orthogonal matrix P such that $P^{-1}AP$ is diagonal.

END OF PAPER

MATHM12B