UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

24

Mathematics M12B: Algebra 2

COURSE CODE	: MATHM12B
UNIT VALUE	: 0.50
DATE	: 09-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

ų.

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Let H be a subset of a group G. Give necessary and sufficient conditions for H to be a subgroup of G. In each of the following cases, determine if H is a subgroup of G or not, justifying your answer:
 - (i) $G = \mathbb{R}$ (under addition), $H = \{x \in G : x \ge 0\};$
 - (ii) $G = GL_2(\mathbb{R}), H = \{A \in G : A^{-1} = A^T\};$
 - (iii) $G = S(\mathbb{R}), H = \{f \in G : f(1) = 1\};$
 - (iv) G is any abelian group, $H = \{g \in G : g^2 = e\};$
 - (v) $G = S_7, H = \{g \in G : g^2 = e\}.$

 $[GL_2(\mathbb{R})$ denotes the group of real 2×2 invertible matrices under matrix multiplication: $S(\mathbb{R})$ is the group of bijections from \mathbb{R} to \mathbb{R} under composition; S_7 is the group of permutations of 1,2,3,4,5,6,7]

- 2. (a) State, without proof, Lagrange's Theorem. Prove that in a finite group G the order of any element divides the order of the group.
 - (b) Deduce that $\overline{a}^{p-1} = \overline{1}$ in \mathbf{Z}_p^* for all $\overline{a} \in \mathbf{Z}_p^*$ (where p is a prime and \mathbf{Z}_p^* denotes the group of non-zero integers mod p under multiplication).
 - (c) Find (i) $\overline{2}^{1803}$, (ii) $\overline{2}^{358}$ in \mathbb{Z}_{19}^* .
 - (d) Show that every element in \mathbf{Z}_{19}^* has a 5th root.
- 3. (a) Let A be an $n \times n$ matrix. Give the definition of det(A). State, without proof, the effect on the determinant of each type of elementary row operation. Give a formula for the determinant of an upper triangular matrix and prove it.

(b) Evaluate det
$$\begin{pmatrix} -1 & 2 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ -1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 3 & -1 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
.
(c) Find det $\begin{pmatrix} a & b & c & d \\ b & c & d & a \\ c & d & a & b \\ d & a & b & c \end{pmatrix}$, expressing your answer as a product of linear and/or quadratic factors.

quodrane idea

MATHM12B

PLEASE TURN OVER

- 4. (a) Let A be an $n \times n$ matrix over \mathbb{R} . Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector \mathbf{v} of A;
 - (iii) the characteristic polynomial $c_A(t)$ of A;
 - (iv) A is diagonalizable (over \mathbb{R}).
 - (b) Prove that if A has n distinct eigenvalues, then A is diagonalisable.
 - (c) Let D be an $n \times n$ diagonal matrix with distinct entries on the diagonal, and X an $n \times n$ matrix such that XD = DX. Prove that X is diagonal.

Let A and B be two $n \times n$ matrices, each of which has n distinct eigenvalues and such that AB = BA. Prove that they are simultaneously diagonalisable, i.e. there exists an invertible P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.

5. Let
$$A = \begin{pmatrix} 7 & -10 \\ 3 & -4 \end{pmatrix}$$
.

- (i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
- (ii) Find A^n (for positive integers n).
- (iii) Solve the system of equations

$$\frac{dx_1}{dt} = 7x_1 - 10x_2$$

$$\frac{dx_2}{dt} = 3x_1 - 4x_2$$

given that $x_1(0) = 0, x_2(0) = 1$.

(iv) Suppose a sequence of vectors \mathbf{v}_i is given by $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\mathbf{v}_{n+1} = A^{-1}\mathbf{v}_n$. Find the limit, as $n \longrightarrow \infty$, of \mathbf{v}_n .

- 6. (a) Let A be a real symmetric matrix and let \mathbf{u}, \mathbf{v} be eigenvectors associated to the (real) eigenvalues λ and μ respectively, where $\lambda \neq \mu$. Prove that \mathbf{u} and \mathbf{v} are orthogonal vectors.
 - (b) Let $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}$. Find an orthogonal matrix P such that $P^{-1}AP$ is diagonal.
 - (c) Prove that if A is a real matrix which is orthogonally diagonalisable then A is symmetric.

MATHM12B

END OF PAPER