

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M12B: Algebra 2

COURSE CODE	: MATHM12B
UNIT VALUE	: 0.50
DATE	: 07-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Let G be a group and H a subset of G. State the conditions usually used to check that H is a subgroup of G. In each of the following cases, determine if H is a subgroup of G or not, justifying your answer:
 - (i) $G = GL_2(\mathbf{R})$, $H = \{A \in G : A^{-1} = A\}.$

(ii)
$$G = GL_2(\mathbf{R})$$
, $H = \{A \in G : A^{-1} = A^T\}$.

(iii) $G = GL_2(\mathbf{R})$, $H = \{A \in G : A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, a \ge 0\}.$

- (iv) $G = S_3$, H is the set of elements of G of order 1 or 2.
- (v) $G = S_3$, H is the set of elements of G of order 1 or 3.

 $[GL_2(\mathbf{R})$ is the group of real 2 × 2 invertible matrices under multiplication: S_3 is the group of permutations of $\{1, 2, 3\}$.]

2. (a) Prove Lagrange's Theorem.

1

- (b) Deduce that a group of prime order is cyclic.
- (c) Let G be the symmetry group of a regular pentagon. Find all subgroups of G, justifying your answer.

[You may assume, if you wish, that elements of G have a normal form $x^i y^j$ ($0 \le i \le 4, 0 \le j \le 1$) and that G has presentation $\langle x, y : x^5 = y^2 = e, yx = xy^4 \rangle$]

- 3. (a) Let A be an $n \times n$ matrix. Give the definition of det(A). Let B be obtained from A by performing the elementary row operation e.
 - (i) Prove that if e = p(r, s) (exchange rows r and s), then det(B) = -det(A).
 - (ii) State (do not prove) what happens if e is each of the other two types of elementary row operation. Also state (do not prove) what is the determinant of an upper triangular matrix.
 - (b) Evaluate the determinant of each of the following matrices, in case (ii) giving the answer in factorized form:

(i) det
$$\begin{pmatrix} 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 2 & -2 & 3 \\ 2 & 0 & 0 & 1 & 1 \end{pmatrix}$$
 (ii) det $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{pmatrix}$

MATHM12B

PLEASE TURN OVER

- 4. (a) Let A be an $n \times n$ matrix over **R**. Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector \mathbf{v} of A;
 - (iii) the characteristic polynomial $c_A(t)$ of A;
 - (iv) A is diagonalizable (over \mathbf{R}).

Prove that A is diagonalizable if and only if \mathbf{R}^n has a basis of eigenvectors of A.

- (b) Prove that if A has n distinct eigenvalues, then A is diagonalisable.
- (c) In each case below give an example of a 2×2 matrix with only one distinct eigenvalue such that
- (i) A is diagonalizable;
- (ii) A is not diagonalizable.
- 5. Let $A = \begin{pmatrix} -5 & 4 \\ -6 & 5 \end{pmatrix}$.
 - (i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
 - (ii) Find a matrix B such that $B^3 = A$
 - (iii) Solve the system of equations

$$\frac{dx_1}{dt} = -5x_1 + 4x_2$$

$$\frac{dx_2}{dt} = -6x_1 + 5x_2$$

given that $x_1(0) = 3, x_2(0) = 4$.

(iv) The exponential e^X for a square matrix X is defined by

$$e^X = \sum_{i=0}^{\infty} \frac{1}{i!} A^i$$

Find e^A for the above matrix A.

6. (a) Prove that if A is a real symmetric matrix then all the eigenvalues of A are real, and A is orthogonally diagonalisable.

(b) Let $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$. Find an orthogonal matrix P such that $P^{-1}AP$ is diagonal.

MATHM12B

END OF PAPER