EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M12B: Algebra 2

COURSE CODE : MATHM12B

UNIT VALUE : 0.50

DATE : 08-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.
Throughout \mathbb{F} denotes a field and a basis is always assumed to contain a finite number of elements.

1. (a) Let $A=\left(a_{i, j}\right) \in{ }^{n} \mathbb{F}^{n}$.

Define
(i) the (i, j) minor $M_{i, j}$ of A,
(ii) the (i, j) co-factor $A_{i, j}$ of A.

Give the expansions of $|A|$ by its i th row and by its j th column.
Prove that $\left|A^{T}\right|=|A|$, where A^{T} is the transpose of A.
(b) Define

$$
A_{n}=\left[\begin{array}{rrrrrrr}
-2 & 1 & . & . & . & 0 & 0 \\
1 & -2 & . & . & . & 0 & 0 \\
. & . & & & . & . \\
. & . & & & . & . \\
. & . & & & . & . \\
0 & 0 & . & . & -2 & 1 \\
0 & 0 & . & . & . & 1 & -2
\end{array}\right]
$$

where $A_{n} \in{ }^{n} \mathbb{R}^{n}$ has -2's down the main diagonal, 1's down the superdiagonals and zeros elsewhere.
Let $u_{n}=\left|A_{n}\right|$, where $u_{1}=-2$ and $u_{2}=3$. Prove that $u_{n}=-2 u_{n-1}-u_{n-2}$ for $n \geqslant 3$ and deduce that $u_{n}=(-1)^{n}(n+1)$.
2. (a) Let $A \in{ }^{n} \mathbb{F}^{n}$. Define the terms:
(i) eigenvalue of A,
(ii) eigenvector of A,
(iii) A is diagonalizable.

Show that A is diagonalizable if and only if there is an invertible matrix $P \in G L(n, \mathbb{F})$, whose columns are eigenvectors of A.
(b) Let

$$
A=\left[\begin{array}{ll}
4 & -3 \\
2 & -1
\end{array}\right] \in{ }^{2} \mathbb{R}^{2}
$$

(i) Find $P \in G L(2, \mathbb{R})$ such that $P^{-1} A P$ is a diagonal matrix.
(ii) Find A^{n} for every $n \in \mathbb{N}$.
3. Let ${ }_{F} V$ be a vector space and $U \subseteq V$. Define what it means to say that U is a subspace of V.
(a) Let A and B be subspaces of V.
(i) Define $A+B$ and show that $A+B$ is a subspace of V.
(ii) Define what it means to say that V is the direct sum of A and B, $V=A \oplus B$. Show that $V=A \oplus B$ if and only if every $\underline{v} \in V$ can be expressed in the form $\underline{v}=\underline{a}+\underline{b}$ for unique $\underline{a} \in A, \underline{b} \in B$.
(b) Let $A=\{(s, 2 s): s \in \mathbb{R}\}$ and $B=\{(t, t): t \in \mathbb{R}\}$. Show that A and B are subspaces of \mathbb{R}^{2} and that $\mathbb{R}^{2}=A \oplus B$. Express $(-1,1) \in \mathbb{R}^{2}$ uniquely in the form $(-1,1)=\underline{a}+\underline{b}$, where $\underline{a} \in A, \underline{b} \in B$. Justify your answers.
[In your answers to (a) and (b) you may use any standard subspace tests which you require.]
4. (a) Let $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\} \subseteq V$ where ${ }_{F} V$ is a vector space. Define the following:
(i) $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is linearly dependent,
(ii) $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is linearly independent,
(iii) the linear span $L\left(\underline{v}_{1}, \ldots, \underline{v}_{r}\right)$ of $\left\{\underline{v_{1}}, \ldots, \underline{v}_{r}\right\}$,
(iv) $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is a spanning set for V,
(v) $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is a basis for V.

Show that $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is linearly dependent if and only if $\underline{v}_{i} \in L\left(\underline{v}_{1}, \ldots, \underline{v}_{i-1}\right)$ for some $1 \leqslant i \leqslant r$.
(b) Let $\underline{a}_{i} \in{ }^{5} \mathbb{R}, 1 \leqslant i \leqslant 5$, where

$$
\underline{a}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
2 \\
0 \\
1
\end{array}\right], \underline{a}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
2 \\
1
\end{array}\right], \underline{a}_{3}=\left[\begin{array}{r}
3 \\
-1 \\
0 \\
4 \\
3
\end{array}\right], \underline{a}_{4}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
2 \\
2
\end{array}\right], \underline{a}_{5}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Show that $\left\{\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}, \underline{a}_{4}, \underline{a}_{5}\right\}$ is linearly dependent and find $1 \leqslant i \leqslant 5$ such that $\underline{a}_{i} \in L\left(\underline{a}_{1}, \ldots, \underline{a}_{i-1}\right)$. Find a subset of $\left\{\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}, \underline{a}_{4}, \underline{a}_{5}\right\}$ which is a basis for $L\left(\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}, \underline{a}_{4}, \underline{a}_{5}\right)$. Justify your answers.
5. State, without proof, the Steinitz Exchange theorem.
(a) Show that any two bases of a vector space always have the same number of elements.
State what it means to say that a vector space V is finite-dimensional and define the dimension of V.
(b) Let ${ }_{F} V$ be a finite-dimensional vector space with $\operatorname{dim}(V)=n$. If $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\} \subseteq$ V spans V, show that $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is a basis for V.
[You may assume, without proof, any standard results about spanning sets.]
(c) Consider $\mathbb{R}_{3}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}: a_{i} \in \mathbb{R}, 0 \leqslant i \leqslant 3\right\}$ as a vector space over \mathbb{R} in the usual way. Determine which of the following sets of elements of $\mathbb{R}_{3}[x]$, if any, are bases for $\mathbb{R}_{3}[x]$.
(i) $A=\left\{(1+x),\left(x+x^{2}\right),\left(x^{2}+x^{3}\right)\right\}$
(ii) $B=\left\{\left(1-x^{3}\right),(x-1),\left(x^{2}-x\right),\left(x^{3}-x^{2}\right)\right\}$,
(iii) $C=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$.
6. Let ${ }_{F} V,{ }_{F} W$ be vector spaces. Define what it means to say that $\alpha: V \rightarrow W$ is a linear map. Show that this is the case if and only if $(\forall \lambda, \mu \in \mathbb{F})(\forall \underline{a}, \underline{b} \in V) \alpha(\lambda \underline{a}+\mu \underline{b})=\lambda \alpha(\underline{a})+\mu \alpha(\underline{b})$.
Let $\alpha: V \rightarrow W$ be a linear map. Define (i) $\operatorname{Im}(\alpha)$, (ii) $\operatorname{Ker}(\alpha)$ and show that $\operatorname{Im}(\alpha) \leqslant W$ and $\operatorname{Ker}(\alpha) \leqslant V$.
Suppose further that V and W are finite-dimensional vector spaces. Define (i) $r(\alpha)$, the rank of α, (ii) $n(\alpha)$, the nullity of α. State, without proof, a relation between $r(\alpha)$ and $n(\alpha)$.
For any $A, B \in{ }^{2} \mathbb{F}^{2}$ define $\alpha:{ }^{2} \mathbb{F}^{2} \rightarrow{ }^{2} \mathbb{F}^{2}$ by $X \mapsto A X+X B$. Show that α is a linear map. For $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, find (i) $\operatorname{Ker}(\alpha)$, (ii) $\operatorname{Im}(\alpha)$, (iii) $n(\alpha)$, (iv) $r(\alpha)$. Verify the relation between $r(\alpha)$ and $n(\alpha)$ which you stated above. Justify your answers.

