UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Ĵ,

Mathematics M12B: Algebra 2

COURSE CODE	:	MATHM12B
UNIT VALUE	:	0.50
DATE	:	08-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0943-3-180 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

Throughout \mathbb{F} denotes a field and a basis is always assumed to contain a finite number of elements.

1. (a) Let $A = (a_{i,j}) \in {}^n \mathbb{F}^n$. Define

- (i) the (i, j) minor $M_{i,j}$ of A,
- (ii) the (i, j) co-factor $A_{i,j}$ of A.

Give the expansions of |A| by its *i*th row and by its *j*th column.

Prove that $|A^T| = |A|$, where A^T is the transpose of A.

(b) Define

	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$	1	•	•	•	0	0	
		-2	•	·	•	0	U	l
		•				•	•	
$A_n =$		•				•	-	
							•	
	0	0				-2	1	
	0	0			٠	1	-2	

where $A_n \in {}^n \mathbb{R}^n$ has -2's down the main diagonal, 1's down the superdiagonals and zeros elsewhere.

Let $u_n = |A_n|$, where $u_1 = -2$ and $u_2 = 3$. Prove that $u_n = -2u_{n-1} - u_{n-2}$ for $n \ge 3$ and deduce that $u_n = (-1)^n (n+1)$.

MATHM12B

PLEASE TURN OVER

- 2. (a) Let $A \in {}^{n}\mathbb{F}^{n}$. Define the terms:
 - (i) eigenvalue of A,
 - (ii) eigenvector of A,
 - (iii) A is diagonalizable.

Show that A is diagonalizable if and only if there is an invertible matrix $P \in GL(n, \mathbb{F})$, whose columns are eigenvectors of A.

(b) Let

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \in {}^2 \mathbb{R}^2.$$

- (i) Find $P \in GL(2, \mathbb{R})$ such that $P^{-1}AP$ is a diagonal matrix.
- (ii) Find A^n for every $n \in \mathbb{N}$.
- 3. Let $_{\mathbb{F}}V$ be a vector space and $U \subseteq V$. Define what it means to say that U is a **subspace** of V.
 - (a) Let A and B be subspaces of V.
 - (i) Define A + B and show that A + B is a subspace of V.
 - (ii) Define what it means to say that V is the direct sum of A and B, $V = A \oplus B$. Show that $V = A \oplus B$ if and only if every $\underline{v} \in V$ can be expressed in the form $\underline{v} = \underline{a} + \underline{b}$ for unique $\underline{a} \in A, \underline{b} \in B$.
 - (b) Let $A = \{(s, 2s) : s \in \mathbb{R}\}$ and $B = \{(t, t) : t \in \mathbb{R}\}$. Show that A and B are subspaces of \mathbb{R}^2 and that $\mathbb{R}^2 = A \oplus B$. Express $(-1, 1) \in \mathbb{R}^2$ uniquely in the form $(-1, 1) = \underline{a} + \underline{b}$, where $\underline{a} \in A, \underline{b} \in B$. Justify your answers.

[In your answers to (a) and (b) you may use any standard subspace tests which you require.]

MATHM12B

CONTINUED

- 4. (a) Let $\{\underline{v}_1, \ldots, \underline{v}_r\} \subseteq V$ where ${}_{\mathbb{F}}V$ is a vector space. Define the following:
 - (i) $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is linearly dependent,
 - (ii) $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is linearly independent,
 - (iii) the linear span $L(\underline{v}_1, \ldots, \underline{v}_r)$ of $\{\underline{v}_1, \ldots, \underline{v}_r\}$,
 - (iv) $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is a spanning set for V,
 - (v) $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is a basis for V.

Show that $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is linearly dependent if and only if $\underline{v}_i \in L(\underline{v}_1, \ldots, \underline{v}_{i-1})$ for some $1 \leq i \leq r$.

(b) Let $\underline{a}_i \in {}^5\mathbb{R}, 1 \leq i \leq 5$, where

$$\underline{a}_{1} = \begin{bmatrix} 1\\ -1\\ 2\\ 0\\ 1 \end{bmatrix}, \ \underline{a}_{2} = \begin{bmatrix} 1\\ 0\\ -1\\ 2\\ 1 \end{bmatrix}, \ \underline{a}_{3} = \begin{bmatrix} 3\\ -1\\ 0\\ 4\\ 3 \end{bmatrix}, \ \underline{a}_{4} = \begin{bmatrix} 2\\ -1\\ 1\\ 1\\ 2\\ 2 \end{bmatrix}, \ \underline{a}_{5} = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ -1\\ 1 \end{bmatrix}.$$

Show that $\{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ is linearly dependent and find $1 \leq i \leq 5$ such that $\underline{a}_i \in L(\underline{a}_1, \ldots, \underline{a}_{i-1})$. Find a subset of $\{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ which is a basis for $L(\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5)$. Justify your answers.

- 5. State, without proof, the Steinitz Exchange theorem.
 - (a) Show that any two bases of a vector space always have the same number of elements.

State what it means to say that a vector space V is finite-dimensional and define the dimension of V.

- (b) Let FV be a finite-dimensional vector space with dim(V) = n. If {v₁,..., vₙ} ⊆ V spans V, show that {v₁,..., vₙ} is a basis for V.
 [You may assume, without proof, any standard results about spanning sets.]
- (c) Consider $\mathbb{R}_3[x] = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_i \in \mathbb{R}, 0 \leq i \leq 3\}$ as a vector space over \mathbb{R} in the usual way. Determine which of the following sets of elements of $\mathbb{R}_3[x]$, if any, are bases for $\mathbb{R}_3[x]$.

(i)
$$A = \{(1+x), (x+x^2), (x^2+x^3)\}$$

- (ii) $B = \{(1 x^3), (x 1), (x^2 x), (x^3 x^2)\},\$
- (iii) $C = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}.$

MATHM12B

PLEASE TURN OVER

6. Let $_{\mathbb{F}}V$, $_{\mathbb{F}}W$ be vector spaces. Define what it means to say that $\alpha: V \to W$ is a linear map. Show that this is the case if and only if $(\forall \lambda, \mu \in \mathbb{F})(\forall \underline{a}, \underline{b} \in V) \alpha(\lambda \underline{a} + \mu \underline{b}) = \lambda \alpha(\underline{a}) + \mu \alpha(\underline{b}).$

Let $\alpha : V \to W$ be a linear map. Define (i) $\operatorname{Im}(\alpha)$, (ii) $\operatorname{Ker}(\alpha)$ and show that $\operatorname{Im}(\alpha) \leq W$ and $\operatorname{Ker}(\alpha) \leq V$.

Suppose further that V and W are finite-dimensional vector spaces. Define (i) $r(\alpha)$, the rank of α , (ii) $n(\alpha)$, the nullity of α . State, without proof, a relation between $r(\alpha)$ and $n(\alpha)$.

For any $A, B \in {}^{2}\mathbb{F}^{2}$ define $\alpha : {}^{2}\mathbb{F}^{2} \to {}^{2}\mathbb{F}^{2}$ by $X \mapsto AX + XB$. Show that α is a linear map. For $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, find (i) Ker(α), (ii) Im(α), (iii) $n(\alpha)$, (iv) $r(\alpha)$. Verify the relation between $r(\alpha)$ and $n(\alpha)$ which you stated above. Justify your answers.

MATHM12B

END OF PAPER