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All questions may be attempted but only marks obtained on the best four  solutions will 
count. 
The use of an electronic calculator is not  permitted in this examination. 

Throughout F denotes a field. 

. (a) Let A = (ai,y) E ~F ~. Define 

(i) the ( i , j )  minor, Mi,j, of A, 

(ii) the ( i , j )  co-factor, Ai,j, of A, 

(iii) the adjugate, Adj(A), of A. 
Explain how to expand ]A I by its i th row and j t h  column. 
Show that A Adj(A) = IAlIn = Adj(A)A.  

(b) Let A' C nlF" be obtained from A E "IF" by an elementary row operation. For 
each such operation state, without proof, how to calculate [A' I in terms of ]A]. 

Let u ,  = [A,I where 

An 

2 1 1 1 1 
1 2 1 1 1 
1 1 2 1 1 

1 1 1 2 1 
1 1 1 1 2 

where the (i, j )  entry of A is 

1 ~< i, j ~< n. Prove that un 

1 i f / # j  
2 i f i = j  

= n + l .  
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. (a) Let A C nY~. Define the following terms: 

(i) eigenvalue of A, 

(ii) eigenvector of A, 

(iii) characteristic polynomial, CA(X), of A. 

If B = A r is the transpose of A, show that CB (x) = CA (x). 

[ 6  5 ]  2R2. (b) L e t A =  3 4 E 

(i) Find P C GL(2, R) such that P - l A P  is a diagonal matrix. 

(ii) Find A m for every r~ C N. 

(iii) Find four distinct matrices B C 2R2 such that  B 2 = A. 

3. Let 

(a) 

(b) 

(c) 

~V be a vector space. 

Let U c_ V. Define what it means to say that  U is a subspace of V. Show that  
this is the case if and only if U is non-empty and for every A, # c IF and for 
every _a, _b E U, A_a + #b C U. 

Let U and W be subspaces of V. Define U + W. Show that U N W and U + W 
are subspaces of V. 

Let A, B, C be subspaces of V. Show that (AMB)+(AMC) C_ AM(B+C). Give 
an example of subspaces A, B, C oflR 2 such that  (AAB)+(AC~C) ¢ An(B+C) .  
Justify your answer. 
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4. Let {v_l, . . .  ,v~} C V where ~V is a vector space. Define the following: 

(i) {_vl,... ,%}  is linearly dependent, 

(ii) { v ~ , . . . , % }  is l inearly independent, 

(iii) the linear span, L ( v l , . . . , % ) ,  of {_vl,... ,%},  

(iv) {v__l,..., v_~} is a spanning set for V, 

(v) {Vl , . . . , v~}  is a basis for V. 

Show that  some subset of {v l , . . .  , v~} is a basis for L ( v l , . . . ,  v~). 

[Any standard results about linear dependence and spanning sets which you use in 
your proof should be carefully stated.] 

Find a subset of the columns of the matr ix 

A = 

1 - 2  - 1  1 
- 1  2 1 1 

2 - 3  0 1 
1 - 1  1 1 

- 1  
3 E 4RS 
0 
2 

which is a basis for the column-space of A. Express each of the remaining columns 
of A as a linear combination of the members of this basis. Just i fy  your answers. 

5. State,  without proof, the Steinitz exchange theorem. Show tha t  any two bases for a 
vector space ~V have the same number of elements. Define the dimension of V. 

(a) Let {A1, • -. , -~,} C V be linearly independent  where yV is a vector space with 
dim(V) = n. 

Show tha t  (i) rn <~ n, (ii) if m = n, then {_u~,... ,_~,,} is a basis for V. 

(b) Let { e l , . . . , e , }  be a basis for the vector space aV. 

If n is odd, show tha t  {_e 1 + e 2 , e  2 + ~ , . . .  , g , - t  + _%,__e, + a t }  is linearly inde- 
pendent  and a basis for V. 
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. (a) Let c~ : V --> W where ~V, ~W are vector spaces. Define 

(i) Im(c~), 

(ii) Ker(c~). 

Suppose in addition that  ~V, FW are finite-dimensional. Define 

(i) the rank of a, r (a) ,  

(ii) the nullity of c~, n(ct). 

Prove tha t  r(ct) + n(a)  = dim(V).  

(b) Let a : V + V be a linear map where ~V is a finite-dimensional vector space. 
Suppose that  c~ 2 = 0. Show that  Im(c~) C_ Ker(c~) and hence or otherwise show 

1 dim(V). that  r(c~) <~ 5 

Give a specific example of a and V where c~ 2 = 0 and r(ct) = ½dim(V).  

[Throughout  you may  assume  any  s tandard  results  about vector spaces and lin- 

ear maps.] 
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