EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M12A: Algebra 1

COURSE CODE : MATHM12A

UNIT VALUE : 0.50

DATE : 03-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (i) Negate the following formula, and replace the result by an equivalent formula which does not involve either \Longrightarrow or \neg :

$$
(\neg p \Longrightarrow q) \Longrightarrow \neg(\neg r \Longrightarrow s)
$$

(ii) Negate the following formula, and replace it by an equivalent one which does not involve \neg, \forall, \wedge or \vee;

$$
((\forall y)(Q(x, y) \wedge \neg P(y, x))) \bigwedge(\exists x) P(x, y)
$$

(iii) Prove that any cyclic permutation of the set $\{1, \ldots, n\}$ can be written as a product of adjacent transpositions.
(iv) Decompose $\quad \sigma=\left(\begin{array}{ccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 7 & 1 & 8 & 10 & 2 & 15 & 14 & 3 & 4 & 13 & 6 & 11 & 9 & 5 & 12\end{array}\right)$
into a product of disjoint cycles and hence compute $\operatorname{sign}(\sigma)$ and $\operatorname{ord}(\sigma)$.
2. Let $\epsilon(r, s)$ be the basic $m \times m$ matrix given by $\epsilon(r, s)_{i j}=\delta_{r i} \delta_{s j}$ where ' δ ' denotes the Kronecker delta. Explain without proof how to calculate the product $\epsilon(r, s) \epsilon(u, t)$.

Describe in detail the elementary $m \times m$ matrices
(i) $E(r, s ; \lambda) \quad(r \neq s)$; (ii) $\Delta(r, \lambda) \quad(\lambda \neq 0)$; (iii) $P(r, s) \quad(r \neq s)$
in terms of the basic matrices $\epsilon(r, s)$.
For the matrix A below, find A^{-1} and express A^{-1} as a product of elementary matrices; hence also express A as a product of elementary matrices.

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

3. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a subset of a vector space V; explain what is meant by saying that the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is (i) linearly independent, and (ii) spans V.

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a spanning set for V, and suppose that $\mathbf{u} \in V$ can be expressed as a linear combination of the form

$$
\mathbf{u}=\sum_{r=1}^{n} \lambda_{r} \mathbf{v}_{r}
$$

with $\lambda_{1} \neq 0$. Show that $\left\{\mathbf{u}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is also a spanning set for V.
State the Exchange Lemma, and explain how it is used in formulating the idea of the dimension of a vector space.

In each case below, decide with justification whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.
(a) $\left(\begin{array}{r}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 3 \\ 1 \\ 1\end{array}\right)$;
(b) $\left(\begin{array}{r}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 3 \\ 1\end{array}\right)$;
4. Let V, W be vector spaces over a field \mathbb{F} and let $T: V \rightarrow W$ be a mapping; explain what is meant by saying that T is linear.
When T is linear, explain what is meant by (a) the $\operatorname{kernel}, \operatorname{Ker}(T)$ and ; (b) the image, $\operatorname{Im}(T)$.

State and prove a relationship which holds between $\operatorname{dim} \operatorname{Ker}(T)$ and $\operatorname{dim} \operatorname{Im}(T)$.
Let $T_{A}: \mathbb{Q}^{5} \rightarrow \mathbb{Q}^{4}$ be the linear mapping $T_{A}(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 2 \\
-1 & 1 & 0 & 1 & 0 \\
2 & -2 & -1 & 0 & 1
\end{array}\right)
$$

Find (i) $\operatorname{dim} \operatorname{Ker}\left(T_{A}\right)$; (ii) a basis for $\operatorname{Ker}\left(T_{A}\right)$; (iii) a basis for $\operatorname{Im}\left(T_{A}\right)$.
5. Let $f: A \rightarrow B$ be a mapping between sets A, B. Explain what is meant by saying that
(a) f is injective ;
(b) f is surjective ;
(c) f is invertible.

Prove that if f is invertible then f is both injective and surjective.
Show that the mapping $f: \mathbb{Z} \rightarrow \mathbb{Z} ; \quad f(x)=x^{3}+x$ is not surjective, and in each case below decide with proof whether the given mapping is injective ;
(i) $g: \mathbb{R} \rightarrow \mathbb{R} ; \quad g(x)=x^{3}+x$;
(ii) $h: \mathbb{C} \rightarrow \mathbb{C} ; \quad h(x)=x^{3}+x$.

Let $\mathcal{P}_{9}(\mathbb{R})$ be the vector space of polynomials of degree $\leqslant 9$ over the field \mathbb{R} and let $D: \mathcal{P}_{9}(\mathbb{R}) \rightarrow \mathcal{P}_{9}(\mathbb{R})$ be the linear map given by differentiation. Write down the least positive integer n for which $D^{n}=0$ on $\mathcal{P}_{9}(\mathbb{R})$.

By factorisation of the formal expression $D^{n}-\mathrm{I}$, or otherwise, show that the mapping

$$
D^{5}-\mathrm{I}: \mathcal{P}_{9}(\mathbb{R}) \rightarrow \mathcal{P}_{9}(\mathbb{R})
$$

is invertible, and write down
(iii) an expression for its inverse in terms of D, and
(iv) the unique solution $\alpha \in \mathcal{P}_{9}(\mathbb{R})$ to the differential equation

$$
\frac{d^{5} \alpha}{d x^{5}}-\alpha=x^{6}+x^{4}
$$

6. Let $T: U \rightarrow V$ be a linear map between vector space U, V, and let $\mathcal{E}=\left(e_{i}\right)_{1 \leqslant i \leqslant m}$ be a basis for U and $\Phi=\left(\varphi_{j}\right)_{1 \leqslant j \leqslant n}$ be a basis for V. Explain what is meant by the matrix $m(T)_{\mathcal{E}}^{\Phi}$ of T taken with respect to \mathcal{E} (on the left) and Φ (on the right) and prove that if $S: V \rightarrow W$ is also a linear map and $\Psi=\left(\psi_{k}\right)_{1 \leqslant k \leqslant p}$ is a basis for W then

$$
m(S \circ T)_{\mathcal{E}}^{\Psi}=m(S)_{\Phi}^{\Psi} m(T)_{\mathcal{E}}^{\Phi}
$$

Let $T: \mathbf{F}^{2} \rightarrow \mathbf{F}^{2}$ be the mapping $T\binom{x_{1}}{x_{2}}=\binom{3 x_{1}+x_{2}}{-4 x_{1}-x_{2}}$.
and let $\mathcal{E}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ and $\Phi=\left\{\binom{1}{-2},\binom{0}{1}\right\}$.
Write down (i) $m(T)_{\mathcal{E}}^{\mathcal{E}} \quad$ and (ii) $m(\mathrm{Id})_{\Phi}^{\mathcal{E}}$, and hence find $m(T)_{\Phi}^{\Phi}$.

