UNIVERSITY COLLEGE LONDON

7

į

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M12A: Algebra 1

COURSE CODE	: MATHM12A
UNIT VALUE	: 0.50
DATE	: 03-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

05-C0955-3-180 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (i) Negate the following formula, and replace the result by an equivalent formula which does not involve either \implies or \neg :

$$(\neg p \Longrightarrow q) \Longrightarrow \neg (\neg r \Longrightarrow s).$$

(ii) Negate the following formula, and replace it by an equivalent one which does not involve \neg , \forall , \land or \lor ;

$$((\forall y)(Q(x,y) \land \neg P(y,x))) \land (\exists x)P(x,y).$$

(iii) Prove that any cyclic permutation of the set $\{1, \ldots, n\}$ can be written as a product of adjacent transpositions.

(iv) Decompose
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 7 & 1 & 8 & 10 & 2 & 15 & 14 & 3 & 4 & 13 & 6 & 11 & 9 & 5 & 12 \end{pmatrix}$$

into a product of disjoint cycles and hence compute $sign(\sigma)$ and $ord(\sigma)$.

2. Let $\epsilon(r, s)$ be the basic $m \times m$ matrix given by $\epsilon(r, s)_{ij} = \delta_{ri}\delta_{sj}$ where ' δ ' denotes the Kronecker delta. Explain without proof how to calculate the product $\epsilon(r, s)\epsilon(u, t)$.

Describe in detail the elementary $m \times m$ matrices

(i)
$$E(r, s; \lambda)$$
 $(r \neq s)$; (ii) $\Delta(r, \lambda)$ $(\lambda \neq 0)$; (iii) $P(r, s)$ $(r \neq s)$

in terms of the basic matrices $\epsilon(r, s)$.

For the matrix A below, find A^{-1} and express A^{-1} as a product of elementary matrices; hence also express A as a product of elementary matrices.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix},$$

MATHM12A

`ष र

PLEASE TURN OVER

3. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a subset of a vector space V; explain what is meant by saying that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is (i) linearly independent, and (ii) spans V.

Let $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ be a spanning set for V, and suppose that $\mathbf{u} \in V$ can be expressed as a linear combination of the form

$$\mathbf{u} = \sum_{r=1}^n \lambda_r \mathbf{v}_r$$

with $\lambda_1 \neq 0$. Show that $\{\mathbf{u}, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is also a spanning set for V.

State the Exchange Lemma, and explain how it is used in formulating the idea of the dimension of a vector space.

In each case below, decide with justification whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.

(a)
$$\begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\ 1\\ 1\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ -1\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 3\\ 1\\ 1 \end{pmatrix}$;
(b) $\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ 1\\ -1\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ -1\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ 3\\ 1 \end{pmatrix}$;

4. Let V, W be vector spaces over a field \mathbb{F} and let $T: V \to W$ be a mapping; explain what is meant by saying that T is *linear*.

When T is linear, explain what is meant by (a) the kernel, Ker(T) and ; (b) the image, Im(T).

State and prove a relationship which holds between dim Ker(T) and dim Im(T).

Let $T_A: \mathbb{Q}^5 \to \mathbb{Q}^4$ be the linear mapping $T_A(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 2 \\ -1 & 1 & 0 & 1 & 0 \\ 2 & -2 & -1 & 0 & 1 \end{pmatrix}.$$

Find (i) dim $\text{Ker}(T_A)$; (ii) a basis for $\text{Ker}(T_A)$; (iii) a basis for $\text{Im}(T_A)$.

MATHM12A

CONTINUED

- 5. Let $f: A \to B$ be a mapping between sets A, B. Explain what is meant by saying that
 - (a) f is injective; (b) f is surjective; (c) f is invertible.

Prove that if f is invertible then f is both injective and surjective.

Show that the mapping $f: \mathbb{Z} \to \mathbb{Z}$; $f(x) = x^3 + x$ is not surjective, and in each case below decide with proof whether the given mapping is injective;

- (i) $g: \mathbb{R} \to \mathbb{R}$; $g(x) = x^3 + x$;
- (ii) $h: \mathbb{C} \to \mathbb{C}$; $h(x) = x^3 + x$.

Let $\mathcal{P}_9(\mathbb{R})$ be the vector space of polynomials of degree ≤ 9 over the field \mathbb{R} and let $D: \mathcal{P}_9(\mathbb{R}) \to \mathcal{P}_9(\mathbb{R})$ be the linear map given by differentiation. Write down the least positive integer n for which $D^n = 0$ on $\mathcal{P}_9(\mathbb{R})$.

By factorisation of the formal expression $D^n - I$, or otherwise, show that the mapping

$$D^5 - \mathrm{I}: \mathcal{P}_9(\mathbb{R}) \to \mathcal{P}_9(\mathbb{R})$$

is invertible, and write down

- (iii) an expression for its inverse in terms of D, and
- (iv) the unique solution $\alpha \in \mathcal{P}_9(\mathbb{R})$ to the differential equation

$$\frac{d^5\alpha}{dx^5} - \alpha = x^6 + x^4.$$

6. Let $T: U \to V$ be a linear map between vector space U, V, and let $\mathcal{E} = (e_i)_{1 \leq i \leq m}$ be a basis for U and $\Phi = (\varphi_j)_{1 \leq j \leq n}$ be a basis for V. Explain what is meant by the matrix $m(T)_{\mathcal{E}}^{\Phi}$ of T taken with respect to \mathcal{E} (on the left) and Φ (on the right) and prove that if $S: V \to W$ is also a linear map and $\Psi = (\psi_k)_{1 \leq k \leq p}$ is a basis for Wthen

$$m(S \circ T)^{\Psi}_{\mathcal{E}} = m(S)^{\Psi}_{\Phi}m(T)^{\Phi}_{\mathcal{E}}.$$

Let $T: \mathbf{F}^2 \to \mathbf{F}^2$ be the mapping $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 \\ -4x_1 - x_2 \end{pmatrix}$

and let $\mathcal{E} = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$ and $\Phi = \{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$. Write down (i) $m(T)_{\mathcal{E}}^{\mathcal{E}}$ and (ii) $m(\mathrm{Id})_{\Phi}^{\mathcal{E}}$, and hence find $m(T)_{\Phi}^{\Phi}$.

MATHM12A

END OF PAPER