University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M12A: Algebra 1

COURSE CODE : MATHM12A

UNIT VALUE : 0.50

DATE : 29-APR-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let σ be a permutation of the set $\{1, \ldots, n\}$. Explain what is meant by saying (i) σ is an adjacent transposition; (ii) σ is a cycle of length m.

Prove that any cycle can be written as a product of adjacent transpositions.
Define $\operatorname{sign}(\sigma)$, and prove that if σ is a cycle of length m then

$$
\operatorname{sign}(\sigma)=(-1)^{m-1}
$$

Decompose $\quad \sigma=\left(\begin{array}{ccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 5 & 9 & 10 & 15 & 3 & 12 & 4 & 6 & 2 & 1 & 14 & 8 & 7 & 13 & 11\end{array}\right)$ into a product of disjoint cycles and hence compute
(iii) $\operatorname{sign}(\sigma)$ and
(iv) $\operatorname{ord}(\sigma)$.
2. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a subset of a vector space V; explain what is meant by saying that the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is (i) linearly independent, and (ii) spans V.
Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a spanning set for V, and let $\mathbf{u} \in V$ be such that $\mathbf{u} \neq 0$. Show that for some index i, the set $\{\mathbf{u}\} \cup\left\{\mathbf{v}_{j}: j \neq i\right\}$ also spans V.
State the Exchange Lemma, and explain how it is used in formulating the idea of the dimension of a vector space.

In each case below, decide whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.
(a) $\left(\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right)$;
(b) $\left(\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)$.
3. Let $\epsilon(r, s)$ be the basic $m \times m$ matrix

$$
\epsilon(r, s)_{i j}=\left\{\begin{array}{cc}
1 & \text { if } \\
i=r \text { and } j=s \\
0 & \text { otherwise }
\end{array} .\right.
$$

Explain without proof how to calculate the product $\epsilon(r, s) \epsilon(u, t)$.
Describe in detail the elementary $m \times m$ matrices
(i) $E(r, s ; \lambda) \quad(r \neq s)$; (ii) $\Delta(r, \lambda) \quad(\lambda \neq 0)$; (iii) $P(r, s) \quad(r \neq s)$
in terms of the basic matrices $\epsilon(r, s)$.
For the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

find A^{-1} and describe A^{-1} as a product of elementary matrices; hence also express A as a product of elementary matrices.
4. Let V be a vector space over a field \mathbb{F} and let $U \subset V$; explain what is meant by saying that U is a vector subspace of V.
If W is also a vector space over \mathbb{F}, and $T: V \rightarrow W$ is a mapping, explain what is meant by saying that T is linear ; define
(a) the kernel, $\operatorname{Ker}(T)$; (b) the image, $\operatorname{Im}(T)$.

Prove that $\operatorname{Ker}(T)$ is a vector subspace of V.
State without proof a relationship which holds between $\operatorname{dim} \operatorname{Ker}(T)$ and $\operatorname{dim} \operatorname{Im}(T)$.

Let $T_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear mapping $T_{A}(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 3 & 1 & 3 \\
1 & 5 & 1 & 5
\end{array}\right)
$$

Find (i) $\operatorname{dim} \operatorname{Ker}\left(T_{A}\right)$; (ii) a basis for $\operatorname{Ker}\left(T_{A}\right)$; (iii) a basis for $\operatorname{Im}\left(T_{A}\right)$.
5. (i) Negate the following formula, and replace the result by an equivalent formula involving only $p, q, r, \Longrightarrow,($,$) ;$

$$
(\neg(p \wedge \neg r)) \wedge(r \wedge \neg q)
$$

(ii) Negate the following formula, and replace it by an equivalent one which does not involve \neg, \Longrightarrow or \vee;

$$
(\exists x)(\forall y) Q(x, y) \Longrightarrow(\exists x)(\forall y) \neg P(x, y)
$$

(iii) Let $f: A \rightarrow B$ be a mapping between sets A, B. Explain what is meant by saying that
(a) f is injective ;
(b) f is surjective ;
(c) f is invertible.

Prove that f is invertible if and only if f is both injective and surjective.
In each case below decide whether the given mapping f is (a) injective (b) surjective; moreover, if f bijective, give the explicit form of f^{-1} :
(iv) $f: \mathbb{Z} \rightarrow \mathbb{Z} ; \quad f(x)=2 x+1$;
(v) $f: \mathbb{Q} \rightarrow \mathbb{Q} ; \quad f(x)=2 x+1$;
(vi) $f: \mathbb{C} \rightarrow \mathbb{C} ; \quad f(x)=2 x^{2}+1$.
6. Explain what is meant by a field .

If \mathbb{F} is a field and $\lambda \in \mathbb{F}$ is an element for which the equation $x^{2}=\lambda$ has no solution in \mathbb{F}, explain in detail how the set

$$
\mathbb{F}(\sqrt{ } \lambda)=\{a+b \sqrt{ } \lambda: a, b \in \mathbb{F}\}
$$

may be regarded (i) as a vector space over \mathbb{F}, and (ii) as a field; furthermore, derive a formula for $(a+b \sqrt{ } \lambda)^{-1}$ if $a+b \sqrt{ } \lambda \neq 0$.
Illustrate your remarks by displaying the multiplication table of the field $\mathbb{F}_{3}(\sqrt{ }-1)$, where \mathbb{F}_{3} is the field with three elements $\{0,1,2\}$.

Explain how to obtain the field \mathbb{C} of complex numbers by this construction, and give an example of an infinite field other than \mathbb{Q}, \mathbb{R} or \mathbb{C}.

