University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

-

B.Sc. M.Sci.

ŗ

) }

Mathematics M12A: Algebra 1

COURSE CODE	: MATHM12A
UNIT VALUE	: 0.50
DATE	: 29-APR-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

۱

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

Let σ be a permutation of the set {1,...,n}. Explain what is meant by saying
(i) σ is an adjacent transposition; (ii) σ is a cycle of length m.

Prove that any cycle can be written as a product of adjacent transpositions. Define $sign(\sigma)$, and prove that if σ is a cycle of length m then

$$\operatorname{sign}(\sigma) = (-1)^{m-1}$$

Decompose $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 5 & 9 & 10 & 15 & 3 & 12 & 4 & 6 & 2 & 1 & 14 & 8 & 7 & 13 & 11 \end{pmatrix}$

into a product of disjoint cycles and hence compute

(iii) $sign(\sigma)$ and

(iv) $\operatorname{ord}(\sigma)$.

3

2. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a subset of a vector space V; explain what is meant by saying that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is (i) linearly independent, and (ii) spans V.

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a spanning set for V, and let $\mathbf{u} \in V$ be such that $\mathbf{u} \neq 0$. Show that for some index i, the set $\{\mathbf{u}\} \cup \{\mathbf{v}_j : j \neq i\}$ also spans V.

State the Exchange Lemma, and explain how it is used in formulating the idea of the dimension of a vector space.

In each case below, decide whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.

(a)
$$\begin{pmatrix} 1\\ 1\\ -1\\ -1\\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\ -1\\ 1\\ 1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ -1\\ -1\\ 1 \end{pmatrix}$, $\begin{pmatrix} 1\\ -1\\ 1\\ -1 \end{pmatrix}$;
(b) $\begin{pmatrix} 1\\ -1\\ 1\\ -1\\ 1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ 1\\ -1\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 1\\ 1\\ -1\\ 1 \end{pmatrix}$, $\begin{pmatrix} 0\\ 1\\ 0\\ 1 \end{pmatrix}$.

MATHM12A

PLEASE TURN OVER

3. Let $\epsilon(r, s)$ be the basic $m \times m$ matrix

$$\epsilon(r,s)_{ij} = \begin{cases} 1 & \text{if } i = r \text{ and } j = s \\ 0 & \text{otherwise} \end{cases}$$

Explain without proof how to calculate the product $\epsilon(r, s)\epsilon(u, t)$.

Describe in detail the elementary $m \times m$ matrices

(i) $E(r,s;\lambda)$ $(r \neq s)$; (ii) $\Delta(r,\lambda)$ $(\lambda \neq 0)$; (iii) P(r,s) $(r \neq s)$

in terms of the basic matrices $\epsilon(r, s)$.

For the matrix

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix},$$

find A^{-1} and describe A^{-1} as a product of elementary matrices; hence also express A as a product of elementary matrices.

4. Let V be a vector space over a field \mathbb{F} and let $U \subset V$; explain what is meant by saying that U is a vector subspace of V.

If W is also a vector space over \mathbb{F} , and $T: V \to W$ is a mapping, explain what is meant by saying that T is *linear*; define

(a) the kernel, Ker(T); (b) the image, Im(T).

Prove that $\operatorname{Ker}(T)$ is a vector subspace of V.

State without proof a relationship which holds between dim Ker(T) and dim Im(T).

Let $T_A : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear mapping $T_A(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 3 & 1 & 3 \\ 1 & 5 & 1 & 5 \end{pmatrix}.$$

Find (i) dim Ker (T_A) ; (ii) a basis for Ker (T_A) ; (iii) a basis for Im (T_A) .

MATHM12A

CONTINUED

p

5. (i) Negate the following formula, and replace the result by an equivalent formula involving only $p, q, r, \Longrightarrow, (,)$;

 $(\neg (p \land \neg r)) \land (r \land \neg q).$

(ii) Negate the following formula, and replace it by an equivalent one which does not involve \neg , \implies or \lor ;

$$(\exists x)(\forall y)Q(x,y) \implies (\exists x)(\forall y)\neg P(x,y).$$

(iii) Let $f: A \to B$ be a mapping between sets A, B. Explain what is meant by saying that

(a) f is injective; (b) f is surjective; (c) f is invertible.

Prove that f is invertible if and only if f is both injective and surjective.

In each case below decide whether the given mapping f is (a) injective (b) surjective; moreover, if f bijective, give the explicit form of f^{-1} :

- (iv) $f : \mathbb{Z} \to \mathbb{Z}$; f(x) = 2x + 1; (v) $f : \mathbb{Q} \to \mathbb{Q}$; f(x) = 2x + 1;
- (vi) $f: \mathbb{C} \to \mathbb{C}$; $f(x) = 2x^2 + 1$.
- 6. Explain what is meant by a *field*.

If \mathbb{F} is a field and $\lambda \in \mathbb{F}$ is an element for which the equation $x^2 = \lambda$ has no solution in \mathbb{F} , explain in detail how the set

$$\mathbb{F}(\sqrt{\lambda}) = \{a + b\sqrt{\lambda} : a, b \in \mathbb{F}\}$$

may be regarded (i) as a vector space over \mathbb{F} , and (ii) as a field ; furthermore, derive a formula for $(a + b\sqrt{\lambda})^{-1}$ if $a + b\sqrt{\lambda} \neq 0$.

Illustrate your remarks by displaying the multiplication table of the field $\mathbb{F}_3(\sqrt{-1})$, where \mathbb{F}_3 is the field with three elements $\{0, 1, 2\}$.

Explain how to obtain the field \mathbb{C} of complex numbers by this construction, and give an example of an infinite field other than \mathbb{Q} , \mathbb{R} or \mathbb{C} .

MATHM12A

١

END OF PAPER