University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Eng. Coll Dip M.Eng.

Chemical Eng E856: Transport Processes III

COURSE CODE : CENGE856

UNIT VALUE : 0.50

DATE : 24-MAY-04

TIME : $\mathbf{1 0 . 0 0}$

TIME ALLOWED : 3 Hours

Answer FOUR questions.

Each question carries a total of 20 marks each, distributed as shown...
Only the first four answers will be marked.

1. A long vertical drill shaft of radius R_{l} is sheathed by a stationary coaxial cylindrical vessel forming a well of radius R_{2} containing a lubricating liquid. The shaft passes through the liquid free surface and rotates with angular velocity ω.

Assuming that the liquid is Newtonian, derive expressions for the liquid velocity and pressure distributions respectively at a radial distance r from the shaft axis.

Hence show that the height of the free liquid surface relative to a datum ($h-h_{o}$) as a function of radial distance, r, is given by:

$$
h-h_{o}=\frac{K^{2}}{g}\left(2 R_{2}^{2} \ln \frac{R_{2}}{r}-\frac{R_{2}^{4}-r^{4}}{2 r^{2}}\right)
$$

where

$$
K=R_{1}^{2} \omega /\left(R_{2}^{2}-R_{1}^{2}\right)
$$

Continuity and Navier-Stokes equations:

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(\rho \mathrm{rv}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

r-component

$$
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}{ }^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right)=-\frac{\partial \mathrm{p}}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(\mathrm{rv}_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]+\rho g_{r}
$$

θ-component
$\rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}\right)=-\frac{1}{r} \frac{\partial \mathrm{p}}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}\right]+\rho g_{\theta}$
z-component

$$
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial \mathrm{p}}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho g_{z}
$$

2. (i) Convert the x-component of the equations of motion in rectangular co-ordinates provided below into dimensionless form by relating all the variables to suitable reference levels involving a characteristic length, D, and velocity, V. Explain the significance of the dimensionless groups involved and describe a practical application of this dimensionless form.
(ii) Fluid mixing in a full-scale gas phase reactor is to be investigated by constructing a small-scale model in a transparent material that will be operated with a liquid into which coloured tracer will be injected to show up the mixing patterns.

The kinematic viscosities (μ / ρ) for the gas and liquid are 1.5×10^{-5} and $1 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, respectively. Suggest a linear scale factor for the model that will enable the water mixing observations to be related to the gas phase reactor performance.

Navier-Stokes equation for a Newtonian fluid with constant ρ and μ :
x-component

$$
\rho\left(\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+v_{z} \frac{\partial v_{x}}{\partial z}\right)=-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial z^{2}}\right]+\rho g_{x}
$$

3. Describe briefly how mass transfer can be important in determining the performance of chemical reactors.

Based on the film model, derive describing equations to predict the effect of a chemical reaction with irreversible second order reaction kinetics on: the rate of absorption of a gas dissolving into a liquid phase, the corresponding enhancement factor and the critical concentration, respectively.

Component G is absorbed from a gas stream at a partial pressure of 2.0×10^{-1} bar into a liquid containing L where it reacts according to:

$$
G+\mathrm{n} L=G L_{\mathrm{n}}
$$

The reaction is known to be irreversible and practically instantaneous. Calculate, and illustrate graphically, how the rate of absorption of the gas changes as the concentration of L increases from zero to $1.0 \mathrm{kmol} \mathrm{m}^{-3}$. Also estimate the effect of a further doubling of the concentration of L to $2.0 \mathrm{kmol} \mathrm{m}^{-3}$.

Data:

Diffusion coefficients of both G and L in the liquid phase $=6 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Gas phase mass transfer coefficient

$$
=4 \times 10^{-5} \mathrm{kmol} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{bar}^{-1}
$$

Liquid phase mass transfer coefficient $=3 \times 10^{-5} \mathrm{~ms}^{-1}$ Henry's Law coefficient for the solubility of G in L.
$=1 \times 10^{-3}$ bar m mmol^{-1}
Stoichiometric ratio for the liquid phase reaction

$$
=2
$$

CONTINUED

4. 6 tonnes h^{-1} of ideal gas (molecular weight $=44$, pressure $=28$ bar, temperature $=$ $170{ }^{\circ} \mathrm{C}$ and viscosity $=0.45 \mathrm{mPa} \mathrm{s}$) flows inside a smooth straight circular pipe of 0.15 m internal diameter. Given that $\frac{1}{\sqrt{c_{f}}}=4.0 \log _{10}\left(\operatorname{Re} \sqrt{c_{f}}\right)-0.40$ and that the velocity profile in the turbulent core is given by the equation: $v^{+}=2.5 \ln y^{+}+5.5$, where $v^{+}=v / v^{*}, y^{+}=y v^{*} \rho / \mu, v^{*}$ is the friction, or shear, velocity, v is the velocity at a distance y from the pipe wall, ρ is the fluid density and μ the fluid viscosity, estimate:
(i) the velocity of liquid 0.05 m from the pipe wall;
(ii) the velocity at the laminar sub-layer/buffer region interface;
(iii) the thickness of the laminar sub-layer; and
(iv) the Prandtl mixing length at the pipe centre-line.
5. A baffled cylindrical vessel is filled to a height equal to the vessel diameter with a low viscosity Newtonian liquid. This liquid is agitated using a centrally-mounted, standard Rushton disk-turbine with clearance from the bottom of the vessel equal to 40% of the vessel diameter. Discuss, with the aid of diagrams, the effect of gas addition on the power requirements of the impeller when air is injected into the liquid through a single sparger placed centrally under the impeller.

Air is injected at a rate of 2 VVM (volume of gas per unit volume of vessel per minute) into the vessel containing $1.2 \mathrm{~m}^{3}$ of a Newtonian liquid, density $1120 \mathrm{~kg} \mathrm{~m}^{-3}$, and viscosity 0.015 Pa s . The vessel is equipped with two impellers on the same shaft each having diameter, D, equal to 0.2 m , with a separation of $2 D$. The impellers operate at a rotational speed, N, of 150 rpm . Using the correlation below, predict the power input, P_{g}, under aerated conditions.

$$
\begin{equation*}
P_{g}=C\left(\frac{P^{2} N D^{3}}{Q^{0.56}}\right)^{0.45} \tag{6}
\end{equation*}
$$

where C is a constant which is equal to 0.72 when SI units are used, Q is the gassing rate and P is the impeller power input for the ungassed condition. Ungassed power numbers for single impellers may be estimated using the relationships:

$$
\begin{array}{ll}
P o=80 R e^{-1} & \text { in the laminar regime, and } \\
P o=6 & \text { in the turbulent regime } .
\end{array}
$$

What do you expect to be the uncertainty in your prediction?
6. Define the "generalised fluid" in non-Newtonian fluid mechanics and state how it differs from the "power-law" fluid.

The following data on frictional pressure drop, Δp_{f}, versus volumetric flow rate, Q, of a non-Newtonian slurry, density $=4500 \mathrm{~kg} \mathrm{~m}^{-3}$, was obtained using a capillary tube viscometer with an inner diameter of 1.5 mm and 300 mm long.

Δp_{f}	(kPa)	30	60	120	240	480
Q	$\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$	0.017	0.044	0.14	0.35	1.2

$800 \mathrm{~kg} \mathrm{~s}^{-1}$ of this slurry flows along a 290 m length of 0.25 m internal diameter pipeline. Using Dodge and Metzner's friction factor c_{f} versus generalised Reynolds number $R e^{*}$ below estimate the frictional pressure drop.

Fanning friction factor chart for generalised fluids

Note: Log-log paper is provided (attached). Insert it into the Answer Book opposite your answer.

