University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Chemical Eng E802: Transport Processes I

COURSE CODE : CENGE802

UNIT VALUE : 0.50

DATE : 20-MAY-05

TIME : 14.30

TIME ALLOWED : 3 Hours
1.

A horizontal cylinder with diameter d is kept at a constant temperature higher than that of the surrounding air. Show by dimensional analysis that the natural convection heat transfer coefficient, h, between the cylinder and the air, the cylinder diameter, d, the parameter βg, where β is the coefficient of thermal expansion for the air and g the acceleration of gravity, the temperature difference ΔT between the cylinder and the air properties density, ρ, viscosity, μ, specific heat, c_{p}, and thermal conductivity k can be related in the form of the following expression:

$$
N u=\mathrm{f}(G r, P r)
$$

where $N u=\frac{h d}{k}$ is the Nusselt number, $G r=\frac{\beta g \rho^{2} d^{3} \Delta T}{\mu^{2}}$ is the Grashof number and $\operatorname{Pr}=\frac{\mu c_{p}}{k}$ is the Prandtl number. Use as fundamental dimensions length L, mass M, time T, temperature θ and heat (energy) H.

The heat transfer coefficient for a horizontal cylinder with $d=0.2 \mathrm{~m}$ in air at 294 K was measured experimentally and the following results were found:
Measurement 1: temperature of the cylinder $=400 \mathrm{~K}, h=6.545 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$.
Measurement 2: temperature of the cylinder $=500 \mathrm{~K}, h=7.732 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$.
Assuming that the experimental results obey an expression of the form:

$$
N u=a(G r P r)^{b}
$$

where a and b are constants, calculate the heat transfer coefficient for a cylinder with diameter 0.3 m when the temperature of the cylinder is 470 K and that of the surrounding air is 294 K .
For the above conditions the following values can be used for the air properties:
$\rho=0.96 \mathrm{~kg} \mathrm{~m}^{-3}, \mu=2.2 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}, c_{P}=1.01 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, $k=3.2 \times 10^{-2} \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}, \frac{\beta g \rho^{2}}{\mu^{2}}=0.452 \times 10^{8} \mathrm{~K}^{-1} \mathrm{~m}^{-3}$.

2.

What types of forces need to be taken into account in the momentum balance equation? Give an example of each type.
A horizontal circular jet of air impinges on a stationary flat plate held at 30° to the horizontal and is split into the two directions as indicated in Figure $\mathbf{Q 2}$ below.

Figure Q2 Impinging Jet

The jet velocity is $40 \mathrm{~m} \mathrm{~s}^{-1}$ and the jet diameter is 30 mm . If the air velocity magnitude remains constant and equal to that of U_{1}, as the air flows over the plate surface in the directions shown, determine:
(i) The magnitude of the force F_{A} required to hold the plate stationary.
(ii) The fraction of mass flow along the plate surface in each of the two directions.
You can assume that there are no frictional losses along the plate surface.
Density of air: $1.23 \mathrm{~kg} \mathrm{~m}^{-3}$
3.

What are the main assumptions in the derivation of the Bernoulli equation?
Water flows steadily through a diverging tube as shown in the figure below. Determine the velocity V_{3} at the exit of the tube if frictional effects are negligible.
Density: water $=1000 \mathrm{~kg} \mathrm{~m}^{-3}$, manometer liquid $=2000 \mathrm{~kg} \mathrm{~m}^{-3}$
Figure Q3: Diverging Tube

4.

Answer briefly TWO of the following
(i) What are the mechanisms of heat and mass transfer by molecular
diffusion?
(ii) What are the methods for the measurement of liquid viscosity.
(iii) Compare and contrast laminar and turbulent flows.
5.

The defining equation for the Fanning Friction Factor, c_{f}, in a pipe is $\tau_{0}=c_{f} \frac{1}{2} \rho \bar{u}^{2}$, where τ_{0} is the pipe wall shear stress, ρ the fluid density and \bar{u} the mean fluid velocity. Using a momentum balance on a section of pipe, diameter d and length L, show that the pressure loss due to friction, Δp_{f}, is given by

$$
\begin{equation*}
\Delta p_{f}=2 c_{f} \frac{L}{d} \rho \bar{u}^{2} \tag{10}
\end{equation*}
$$

State carefully any assumptions that you make.
$2600 \mathrm{~kg} \mathrm{~min}-1$ of a liquid, density $1170 \mathrm{~kg} \mathrm{~m}^{-3}$ and viscosity 2.3 mPa s , flows through a long horizontal pipeline. If the pipeline has a diameter of 150 mm , a length of 560 m and is made of commercial steel, estimate the pressure loss due to friction.
Data:
Table Q5: Absolute roughness of pipes

Pipe material	Roughness $e(\mathrm{~mm})$
Drawn tubing	0.0015
Commercial Steel \& wrought iron	0.05
Cast iron	0.25
Concrete	$0.3 \sim 3$
Riveted Steel	$1 \sim 10$

The Fanning friction factor is given by:

$$
c_{f}=0.001375\left[1+\left(20,000 \frac{e}{d}+\frac{10^{6}}{R e}\right)^{1 / 3}\right]
$$

6.

The radial heat flux, $q_{r}\left[\mathrm{~W} \mathrm{~m}^{-2}\right]$, at radius r in a long cylinder of circular cross-section with internal energy generation of \dot{q} [$\mathrm{W} \mathrm{m}^{-3}$] is given by $\frac{d\left(r q_{r}\right)}{d r}=\dot{q} r$. Show that the radial temperature profile is given by

$$
T-T_{o}=\frac{\dot{q} r_{o}^{2}}{4 k}\left[1-\left(\frac{r}{r_{o}}\right)^{2}\right]
$$

where T is the temperature at radius r, T_{o} is the temperature at radius r_{o}, the outside radius, and k is the thermal conductivity of the cylinder.
A nuclear fuel element is in the form of a long circular cylinder. If the rate of internal energy generation is $50 \mathrm{MW} \mathrm{m}{ }^{-3}$, calculate the maximum diameter of the element such that the maximum temperature within the rod is no more than 250 K above the element's outer surface temperature.
The thermal conductivity of the fuel element is $30 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$.
7.

Using the information given below, estimate the mass transfer coefficient of a 7 mm diameter sphere of solid sucrose as it falls through water at its terminal velocity.
The terminal velocity of a sphere, diameter d, is given by $u_{t}=\sqrt{\frac{4 d\left(\rho_{s}-\rho\right) g}{3 c_{D_{s}} \rho}}$, where ρ_{s} is the density of the sphere, ρ is the density of the fluid, g is gravitational acceleration and $c_{D_{S}}$ is the drag coefficient of the sphere. The chart below shows how drag coefficients for spheres and cylinders vary with Reynolds number, Re. Liquid mass transfer film coefficients k_{L} from a sphere to a flowing fluid are correlated by $\frac{k_{L} d}{D_{A B}}=2+0.6\left(\frac{\rho u_{t} d}{\mu}\right)^{0.5}\left(\frac{\mu}{\rho D_{A B}}\right)^{0.33}$ where $D_{A B}$ is the mass diffusivity of the solute, μ the fluid viscosity, other symbols are defined as above.

Data:-
Mass diffusivity of sucrose in water $0.45 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Density sucrose solid $1580 \mathrm{~kg} \mathrm{~m}^{-3}$
Density of water $997 \mathrm{~kg} \mathrm{~m}^{-3}$
Viscosity of water 0.5 mPa s

END OF PAPER

