University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Eng. M.Eng.

Chemical Eng E868: Process Heat Transfer

COURSE CODE : CENGE868

UNIT VALUE : 0.50

DATE : 30-APR-04

TIME : $\mathbf{1 0 . 0 0}$
time allowed : 3 Hours

Answer FOUR QUESTIONS. Only the first FOUR answers will be marked.

ALL questions carry a total of $\mathbf{2 5}$ MARKS each, distributed as shown []
1.

Describe the four different modes of condensation.
Atmospheric pressure saturated steam condenses on the outside of a horizontal tube with wall temperature $T_{w}=60^{\circ} \mathrm{C}$ and outer diameter $D=2 \mathrm{~cm}$. Assume that the condensate forms a laminar film and calculate the mass flowrate per unit length of tube dripping from the bottom of the tube.

You can use the following equation for the overall heat transfer coefficient h_{L}

$$
h_{L}=0.725\left[\frac{k_{L}{ }^{3} \rho_{L}\left(\rho_{L}-\rho_{G}\right) g h_{f g}}{\mu_{L}\left(T_{s}-T_{w}\right) D}\right]^{1 / 4}
$$

Where: μ_{L} is the liquid viscosity, $h_{f g}$ is the latent heat of condensation, ρ_{L} and ρ_{G} are the liquid and gas densities respectively, k_{L} is the liquid thermal conductivity, T_{s} is the saturation temperature and g is the acceleration of gravity.

Calculate also the film Reynolds number and check if the film laminar flow assumption is correct.

You can use the following properties for the steam and the condensate:
Liquid: $\rho_{L}=958.4 \mathrm{~kg} \mathrm{~m}^{-3}, \mu_{L}=2.84 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}, k_{L}=0.682 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ Vapour: $\rho_{G}=0.596 \mathrm{~kg} \mathrm{~m}^{-3}$.
$h_{f g}=2.257 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$.
2.

A saturated mixture of steam and water at 390 K is flowing through a horizontal smooth pipe with internal diameter 4 cm . The superficial velocities of the gas and the liquid are $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ and $30 \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Calculate the frictional pressure drop in the pipe using
a) the homogeneous model
b) the following correlation suggested by Turner and Wallis (1965) for separated flow

$$
\Phi_{G}^{2}=\left[1+X^{4 /(5-n)}\right]^{(5-n) / 2}
$$

where $\Phi_{G}{ }^{2}$ and X^{2} are the Lockhart-Martinelli parameters and n is the power (absolute value) of the Reynolds number in the friction factor correlation.

The homogeneous viscosity can be calculated as follows:

$$
\frac{l}{\mu}=\frac{x}{\mu_{g}}+\frac{l-x}{\mu_{l}}
$$

where: $\quad x$ is the quality
μ_{g} and μ_{l} are the gas and liquid viscosities respectively
What are the main assumptions in the above models for homogeneous and separated flow?

The following properties can be used:
Water density $=946 \mathrm{~kg} \mathrm{~m}^{-3}$, water viscosity $=2.39 \times 10^{-4} \mathrm{~Pa} \mathrm{~s}$
Steam density $=1.02 \mathrm{~kg} \mathrm{~m}^{-3}$, steam viscosity $=12.7 \times 10^{-6} \mathrm{~Pa} \mathrm{~s}$
3.

Steam at 473 K flows in a 5 cm OD pipe, which is inside a 30 cm ID galvanised duct of 0.5 cm thickness. The space between the pipes is filled by a gas with thermal conductivity $k=0.03 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. Assuming that the emissivity of the steel pipe is $\varepsilon_{l}=0.75$ and that of the galvanised duct is $\varepsilon_{2}=0.3$, given a Nusselt number for the enclosure of 15 , and a temperature of the duct of 330 K , determine:

Schematic cross-section of pipe inside a duct.
i) the view factors for this geometry.
ii) the heat balance equation neglecting heat resistances inside the pipe and in the pipe and duct walls
iii) the heat lost for a pipe 10 m long
iv) the effective heat transfer coefficient from the galvanised duct to the external air

The surface and space resistances are given by $R_{i}=\frac{\left(I-\varepsilon_{i}\right)}{A_{i} \varepsilon_{i}}$ and $R_{i j}=\frac{I}{A_{i} F_{i j}}$.
The Stefan-Boltzmann constant is $\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$. Neglect end-effects. The external air is at 300 K .

A double pipe heat exchanger is connected in a counter-current configuration. $0.4 \mathrm{~kg} \mathrm{~s}^{-1}$ of glycerine, $C_{P}=2510 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, are heated from $20^{\circ} \mathrm{C}$ using $0.3 \mathrm{~kg} \mathrm{~s}^{-1}$ of water, $C_{P}=4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, at $90^{\circ} \mathrm{C}$. When the heat exchanger is new the glycerine outlet temperature is $70^{\circ} \mathrm{C}$, while before the exchanger is cleaned the glycerine stream will only reach $64^{\circ} \mathrm{C}$.

For the two operating conditions, determine:
i) The effectiveness of the heat exchanger
ii) The outlet water temperature
iii) The number of transfer units, $N T U\left(U A / C_{M i n}\right)$
iv) Verify your result using the following effectiveness equation

$$
\varepsilon_{\text {Counter-Cur }}=\frac{1-\exp \left[-N T U\left(1-C_{\text {Ratio }}\right)\right]}{I-C_{\text {Ratio }} \exp \left[-N T U\left(1-C_{\text {Ratio }}\right)\right]}
$$

5.

A Duralumin rod is kept at $T_{0}=15.9{ }^{\circ} \mathrm{C}$ at one end using water and at $T_{1}=115.5^{\circ} \mathrm{C}$ at the other end using steam. The rod is 470 mm long and has an ${ }^{\cdots \prime \prime}$ OD of 12.7 mm . The Duralumin thermal conductivity, $k=164 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. The air temperature, $T_{A}=21.8^{\circ} \mathrm{C}$.
i) Assuming a constant external heat transfer coefficient, h, show that the following equation is the solution for the temperature profile in the rod,

$$
\theta=\frac{\theta_{0} \sinh [m(L-x)]+\theta_{1} \sinh (m x)}{\sinh (m L)}
$$

where $m^{2}=\frac{2 h}{k r}, \theta=T-T_{A}$ and x is the distance from the cold end.
ii) At a distance of 429 mm from the cold end, the experimental rod temperature is $75^{\circ} \mathrm{C}$. Determine the average heat transfer coefficient.
6.

A pipe $22 \mathrm{~mm} \mathrm{ID}, 25.4 \mathrm{~mm} \mathrm{OD}$, is made of steel of thermal conductivity $k_{P}=45 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. The external heat transfer coefficient is $h_{E x}=30 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$ and the ambient temperature is $20^{\circ} \mathrm{C}$. An oil, $k_{\text {oil }}=0.13 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, flows through the pipe at $120^{\circ} \mathrm{C}$, with $\operatorname{Re}=25000$ and $\operatorname{Pr}=3$. The fluid viscosity is 5.4×10^{-4} and $4.2 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ at 100 and $120^{\circ} \mathrm{C}$ respectively. Given the following correlation

$$
N u=0.027 \operatorname{Re}^{0.8} \operatorname{Pr} 0.33\left(\frac{\mu}{\mu_{w}}\right)^{0.14}
$$

determine:
i) The internal wall temperature.
ii) The overall heat transfer coefficient.
iii) The heat loss for 1 m of pipe.

