UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

4.

Chemical Eng E853: Process Engineering

COURSE CODE	:	CENGE853

UNIT VALUE : 0.50

DATE : 06-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

05--C0186--3-90 © 2005 University College London

TURN OVER

Answer **Question 1** and **THREE** other questions from the rest of the paper. Only the first four answers given will be marked.

ALL questions carry a total of 25 marks each, distributed as shown []

1. Define the terms:

- a) Lower Flammable Limit
- b) Upper Flammable Limit
- c) Flash Point
- d) Minimum Ignition Energy

e) Autoignition Temperature	[8]
and graphically sketch the typical flammability characteristics above identifying the boiling point, flammability range and autoignition region.	[7]
List the four sources of ignition that will start a fire and describe an example of each type.	[10]

2. Cyclohexane can be produced by the reaction

Benzene + 3 $H_2 \leftrightarrow$ Cyclohexane

The reaction takes place at 200 °C and 25 atm absolute. Pure benzene is used as a feed stream, but the hydrogen stream contains 2 mole% methane. The desired production rate is 100 mol/h and the costs are benzene at 6.50/mol, hydrogen at 1.32/mol, cyclohexane at 12.03/mol and fuel at $4.00/10^6$ Btu. Answer the following questions, justifying and explaining your decisions:

(a)	Should the process be batch or continous?	[2]
(b)	Draw the input-output flowsheet.	[10]
(c)	Draw the recycle structure.	[5]
(d)	Assuming that the reaction proceeds to less than 100% conversion, suggest a separation sequence for the process and identify one difficulty in achieving a high purity product stream for this process.	[8]

Data: 1 atm boiling points: benzene at 80.1 °C, hydrogen at -252.76 °C, cyclohexane at 80.7 °C and methane at -161.5 °C.

CONTINUED

i

3. Given the following hot and cold process streams:

٠

		Stream	mCp (kW/°C)	Tin (°C)	Tout (°C)	
		C1	2.5	20	125	
		C2	3	25	100	
		H1	2.5	150	60	
		H2	8	90	60	
	 (a) Apply pinch analysis to this set of streams to identify the minimum utility load assuming a ΔT_{min}=20 °C. Show all work. (b) What are the pinch temperatures? 				ds [15]	
	(b) what are the pinch temperatures?				[9]	
	(c) Draw the tem obtained in pa	perature-ent art (a). Labe	halpy graph fo l all quantitie	or this proble. s identified ir	m using the results a (a) and (b) on this graph	. [5]
4.	What is the role of	fdislocation	s in defining	the ultimate s	trength of a material?	[5]
	How might crack	propagation	be avoided or	nce a crack ha	as commenced?	[5]
	In the pressure vessel codes why is it necessary to add additional thickness to the pressure vessel wall beyond that calculated from a straight stress analysis? Stainless steels are widely used in the process industries. Why? Give two examples where this would not be a good choice of material of construction.				[5]	
					[5]	
	What is the purpos a steel alloy is nee	se of creating ded in a part	g alloys? Giv ticular process	e an example s situation.	where an alloy other thar	n [5]

5. Draw up a *signal flowgraph* and a *stream precursors list* for the process flowsheet shown in the figure below, where the stream numbers are shown in boxes and unit numbers in circles.

Question 5: Process flowsheet

Starting from this signal flowgraph and using non-essential and essential stream node reduction, determine graphically a minimum tear set. [12]

This flowsheet contains "loops within loops". What special step or steps may be taken to help converge such a flowsheet? [5]

6. In the context of process simulation, discuss *briefly* **TWO** of the following:

(i)	Selection of vapour-liquid equilibria models.	[12½]
(ii)	Convergence and convergence acceleration.	[12½]
(iii)	Simultaneous solution of distillation systems.	[12½]

END OF PAPER

[8]