UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Chemical Eng E869: Particulate Systems and Separation Processes

COURSE CODE : CENGE869

UNIT VALUE : 0.50

DATE : 13-MAY-03

TIME : $\mathbf{1 0 . 0 0}$

TIME ALLOWED : 3 Hours

Answer FOUR questions. Only the first four answers will be marked.

ALL questions carry a total of 20 MARKS each, distributed as shown []
1.
(i) A surfactant is a substance that significantly alters the surface tension at a liquid interface at low concentration. Explain briefly how this occurs. What molecular structure characteristics must the surfactant compound possess in order to function efficiently?
(ii) The effect of a surfactant at an interface can be expressed as the surface pressure π :

$$
\pi=\gamma_{0}-\gamma
$$

where γ is the surface tension in the presence of the surfactant and γ_{0} is the surface tension without the surfactant. Give a simple physical description of this surface pressure effect, and compare this quantity with the conventional concept of pressure in three dimensions.
(iii) For dilute solutions of non-ionic surfactants at constant temperature, the Gibbs adsorption isotherm for the liquid-air interface may be written as:

$$
\Gamma_{s}=-\frac{C_{s}}{R T} \cdot \frac{d \gamma}{d C_{s}}
$$

where Γ_{s} is the surface excess concentration of the surfactant at the interface ($\mathrm{kmol} . \mathrm{m}^{-2}$) and C_{s} is the concentration of the surfactant in the bulk liquid (kmol.m ${ }^{-3}$). R is the Universal Gas Constant and T the absolute temperature.

Starting with this isotherm equation, show that the equation of state for an ideal adsorbed layer can be written as:

$$
\Gamma_{s}=\frac{\pi}{R T}
$$

Indicate clearly the assumptions relating to ideality that are made in deriving this expression.
(iv) The following table shows measured values of the surface tension of hydrocinnamic acid in water at $21.5^{\circ} \mathrm{C}$:

Concentration $\left(\mathrm{kmol} . \mathrm{m}^{-3}\right)$	0	0.46	0.83	1.21	1.72	2.04	2.52	3.15
Surface tension $\left(\mathrm{mN} . \mathrm{m}^{-1}\right)$	72.8	69.1	66.5	63.6	59.3	56.1	53.0	47.2

By plotting surface pressure against concentration, or otherwise, show that the adsorbed layer in this case is approximately ideal. Hence, derive a numerical value for the constant B in the expression:

$$
\begin{gather*}
\Gamma_{s}=B . C_{s} \\
\mathrm{R}=8.314 \times 10^{3} \mathrm{~J} . \mathrm{kmol}^{-1} \mathrm{~K}^{-1} . \text { Absolute zero temperature is }-273.15^{\circ} \mathrm{C} . \tag{6}
\end{gather*}
$$

2.

a) A reverse osmosis (RO) plant is required to treat $4.8 \mathrm{~m}^{3}$ per day of a solution of sucrose in water with 3 weight $\%$ of sucrose. The stream has to be concentrated to 10 weight $\%$ sucrose. It can be assumed that the solutions in the feed, permeate and retentate streams all have the same density as water, i.e. $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The plant is operated 24 hours a day. The process is to be designed for a single RO recirculation stage. An aromatic polyamide membrane with a retention R of 0.995 will be used in the unit.
i) To determine the flux through the membrane, a test cell with an area of $50 \mathrm{~cm}^{2}$ at 5 bar and $20^{\circ} \mathrm{C}$ is used to separate the sucrose-water solution. The permeate collection is found to be 10 mg of sucrose in 60 min . Find the flux (in $\mathrm{kg} / \mathrm{m}^{2} \mathrm{hr}$) through the membrane.
ii) Draw a sketch of the process.
iii) Find the flowrates (in $\mathrm{m}^{3} / \mathrm{hr}$) and concentrations (in $\mathrm{kg} / \mathrm{m}^{3}$) of the feed, the retentate and the permeate.
iv) Find the required membrane area.
v) The performance of the membrane is found to decrease over time. After a certain period of time, the retentate product purity is found to be only 8 weight\% sucrose.

1 - Find the actual flux (in $\mathrm{kg} / \mathrm{m}^{2} \mathrm{hr}$) at this time.
2 - Discuss briefly what the possible causes are for this reduction in performance.
3 - Which measures, in terms of design and/or operation, would you suggest to take, to ensure that the product specification is always met?
b)

Define a chromatography process. Discuss briefly the separation mechanisms for the two following chromatographic processes:
i) Ion exchange chromatography
ii) Size exclusion chromatography
3.
a) Show how the size of a non-spherical particle may be expressed in terms of an equivalent spherical particle and explain its utility.
b) Define the terms:
i) equivalent aperture size,
ii) equivalent spherical diameter,
iii) surface shape factor,
iv) volume shape factor, and
v) specific surface area
c) Crystals approximating to briquettes $100 \mu \mathrm{~m}$ long $\times 5 \mu \mathrm{~m}$ in square cross-section are produced in a precipitation process. Calculate:
i) the equivalent spherical volume diameter of the crystals,
ii) their corresponding surface shape factor,
iii) their volume shape factor, and
iv) their specific surface area.
4.
a) Describe, with the aid of sketches, how solids content affects the batch settling of a particulate slurry in terms of its
i) settling velocity
ii) mass flux
b) Derive a simple expression for estimating the required area of a gravity thickener based on settling rate data.
c) An aqueous effluent stream containing 3.5\% w/w (solids/slurry) of solid particles is to be clarified leaving behind a sediment of concentration of not more than 5 kg water per kg solids. Laboratory settling tests using six different slurry concentrations yielded the following data:

Water content $(\mathrm{kg}$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ solids)	5	10	15	20	25	30
Sedimentation rate $(\mathrm{mm} / \mathrm{s})$	0.15	0.18	0.24	0.33	0.40	0.66

In order to separate $20,000 \mathrm{~kg} /$ day of solids (dry basis) in continuous operation, calculate
a) the approximate diameter of a suitable cylindrical thickener (m)
b) the fraction of water removed (\%).
[Density of water $\left.=1000 \mathrm{~kg} / \mathrm{m}^{3}\right]$.
5.
a) Describe, with the aid of a simple sketch, how a batch filter press works.
b) Derive describing equations based on Darcy's Law for operation of a batch filter at
i) constant rate, and
ii) constant pressure.
c) A new pharmaceutical process has been developed and it is proposed to use an existing batch filter to separate the solid from the slurry. A laboratory batch filter 'leaf' test was carried out on a sample of slurry with the following results:

Time (s)	Filtrate collected $\left(\mathrm{m}^{3} 10^{-6}\right)$
0	0
195	150
425	250
570	300

Test filter area $=0.05 \mathrm{~m}^{2}$
Vacuum applied $=25.0 \mathrm{kN} / \mathrm{m}^{2}$

If the full-scale filter has an area of $10 \mathrm{~m}^{2}$ and is operated at constant rate for 20 minutes after which time the pressure drop is $500 \mathrm{kN} / \mathrm{m}^{2}$ and is maintained at that pressure for a further 30 minutes, what would be the expected
i) initial,
ii) overall average, and
iii) final
filtration rates?

END OF PAPER

