UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Eng. M.Eng.

5.

Chemical Eng E869: Particulate Systems and Separation Processes

COURSE CODE	:	CENGE869
UNIT VALUE	:	0.50
DATE	:	10-MAY-02
TIME	:	10.00
TIME ALLOWED	:	3 hours

02-C0192-3-60

© 2002 University of London

TURN OVER

UNIVERSITY OF LONDON

Chemical Engineering

E869

Particulate Systems and Separation Processes

SECTION A

- 1. a) Describe briefly the terms *physisorption* and *chemisorption* that are applied to the adsorption of a gas on to a solid surface. Outline the basic characteristics that differentiate physisorption from chemisorption.
 - b) The Figure below shows adsorption isotherms of Brunauer Types I (Langmuir isotherm) and II (sigmoid isotherm).

Briefly describe the types of adsorption behaviour that give rise to these isotherms.

c) The equation of the Langmuir (Type 1) isotherm is: $\frac{v}{v_m} = \frac{ap}{1+ap}$

where

- p is the ambient pressure of the gas being adsorbed,
- v is the volume of gas adsorbed per unit weight (or volume) of the solid adsorbent,
- v_m and *a* are constants at the given temperature.

Given a set of measured values of p and v, show how the above equation may be rearranged to test whether the Langmuir adsorption model is applicable, and, if it is, to determine values of v_m and a. What is the physical significance of v_m ?

d) The following equilibrium data were measured for the adsorption of ammonia on activated charcoal at 250 K:-

p [kN.m ⁻²]	20	40	60	80	100
$v [m^3(STP).kg^{-1}]$	0.1081	0.1311	0.1446	0.1538	0.1538

Construct a suitable graphical plot to verify that these data comply with the Langmuir isotherm model, and hence determine the values of v_m and a.

[4]

[8]

[4]

[4]

TURN OVER

- 2. a) What is the definition of : i) a membrane and ii) a membrane module? Two of the main desired attributes of membranes are high permeability and high selectivity. Define permeability and selectivity.
 - b) Commercial membrane modules are based on the following membrane configurations: tubular, hollow fibre, plate-and-frame and spiral wound. Which configuration has the highest packing density and how high can the packing density be for this configuration? Which configuration has the highest fouling tendency?
 - c) An ultrafiltration plant is required to treat 50 m³ per day of a proteincontaining waste stream with 0.05 weight% of protein. The stream has to be concentrated to 2 weight% so as to allow recycling to the main process stream. Tubular membrane modules are available as 30m² modules. Assume operation for 20 hr each day. The process is to be designed using a single recirculation stage.

The flux through the membranes (m/h) is given by: $J = 0.02 \ln(30/c_r)$

where c_r is the protein concentration (retentate) in kg/m^3 . However, due to fouling, the flux never exceeds 0.04 m/h.

- i) Draw a sketch of the process.
- ii) Find the feed, permeate and retentate flowrates (in m^3/h) and the feed permeate and retentate concentrations of the protein (in kg/m^3).
- iii)Find the required membrane area.

iv)Find the minimum number of modules needed to achieve the separation. [2]

- d) An aqueous solution of two components A and B is to be separated in a chromatographic column. The sorption isotherms are assumed to be linear and independent and the empirical constants K_i in the linear isotherm are found from experiments to be 0.25 and 0.40 for components A and B, respectively. The superficial solution velocity is 0.03 cm/s and the bed void fraction is 0.30. The feed pulse is 100 s.
 - i) Find the solute wave velocities of the two components in the column. [2]
 - ii) Find the minimum length of the column packing to separate the two solutes.

TURN OVER

[4]

[3]

[2]

[2]

[2]

[3]

SECTION B

×

ł

3.	Write brief notes on The Formation and Characterisation of Particulate Solids.	[20]
4.	Explain with the aid of a sketch how a rotary vacuum (ROVAC) filter works.	[5]
	Derive describing equations to predict the ROVAC's filtration performance in terms of volume of filtrate and filter cake obtained respectively.	[5]
	A continuous ROVAC filter is fitted with a two speed gear box. If the drum rotates at 0.1 Hz a filtrate flowrate of 0.02 m^3 /s is achieved.	
	If the second gear doubles the shaft speed, what is the consequent effect on	
	a) filter cake production rate	[5]
	b) filter cake thickness.	[5]
	[Neglect the resistance of the filter medium and assume that the cake is incompressible.]	
5.	Describe the motion of a solid particle settling in a liquid and discuss the effect on it of applying a centrifugal force.	[5]
	Define the terms Separating Effect, G, and Sigma Factor, Σ , as applied to centrifuges, and explain their meaning.	[5]
	Derive simple expressions for G and Σ for a thin cylindrical solid bowl centrifuge, carefully stating any assumptions that you may make.	[5]
	Estimate the magnitude of G and Σ for a machine 2 m long by 0.5 m in diameter operating with a liquid depth of 0.05 m and rotating at 100 Hz.	[5]

END OF PAPER

-