UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Eng. M.Eng. M.Sc.

١

Chemical Eng E849: Mass Transfer Operations

COURSE CODE	: CENGE849
UNIT VALUE	: 0.50
DATE	: 14-MAY-02
TIME	: 14.30
TIME ALLOWED	: 3 hours

02-C0183-3-100

© 2002 University of London

TURN OVER

UNIVERSITY OF LONDON

Chemical Engineering

-

÷

Answer FIVE questions only. Each question carries a total of 25 marks distributed as shown []

Additional stationery provided: graph paper

1. An air stream containing ammonia (NH3) is to be purified by continuous counter-current contact with clean water in a packed tower. The inlet gas contains 7% by volume of ammonia of which 99% is to be removed. The ammonia-free mass flowrate of air is 5000 kg/h m².

The equilibrium solubility of ammonia in water on a molar ratio basis is given by:

 $\dot{Y}_{A}^{*} = 0.9 X_{A}$

where Y_A^* is the mole ratio of ammonia in the gas phase and X_A is the mole ratio of ammonia in the liquid phase.

Calculate the following:

a) the minimum liquid solvent flow rate

b) the required height of the packed column when the liquid solvent flow rate is 2 times the minimum and assuming that the mass transfer coefficient is $K_{OG}a = 300 \text{ kmol/h m}^3$ [17]

(average molecular weight of air = 29; molecular weight of ammonia = 17)

2. 10000 kg/hr of a mixture containing 40% (mole) methanol (CH3OH) and 60% (mole) water (H2O) is fed to a fractionating column to produce a distillate containing 90% (mole) methanol and a residue containing 90% (mole) water. The column is operating at 760 mmHg and is equipped with a total condenser and a partial reboiler. Assume that the feed, the distillate and the residue are all saturated liquids.

With the aid of a graphical construction on the diagram provided, which must be attached to your answer book, determine:

- a) enthalpies of feed, distillate and residue
- b) minimum reflux ratio Rmin
- [3] c) number of theoretical stages for a reflux ratio R = 1.5 Rmin [15]
- d) condenser and reboiler thermal duties for a reflux ratio R = 1.5 Rmin [5]

Data

Enthalpy-concentration diagram and a y-x diagram for the methanol-water system provided.

TURN OVER

[2]

[8]

3. A multicomponent light hydrocarbons mixture is to be fed as saturated liquid (q=1) into a tray tower operating at 2 atm in conjunction with a total condenser and a partial reboiler. The composition of the feed is given in Table 1. The distillate will have a content of n-pentane equal to a molar fraction of 0.05 and negligible n-hexane; the bottom product (residue) will have a content of n-butane equal to a molar fraction of 0.05 and negligible propane.

Tab	ole 1
All compositions are given in molar	
fra	ctions
	Feed (xF)
1) propane	0.17
2) n-butane	0.32
3) n-pentane	0.35
4) n-hexane	0.16

Find the following:

a) composition of distillate and residue

b) bubble point temperature of residue, and dew point temperature of distillate [15]

c) minimum number of theoretical stages

Data:

Relevant Antoine's constants are given in Table 2:

Table 2

	A	В	С		
propane	15.72600	1872.46000	-25.16000		
n-butane	15.67820	2154.90000	-34.42000		
n-pentane	15.83330	2477.07000	-39.94000		
n-hexane	15.83360	2697.55000	-48.78000		

Antoine's Law: $ln(P^{\circ})=A-(B/(T+C))$ where: $[P^{\circ}=mmHg][T=K]$

Fenske's Equation:

$$N_{M} + 1 = \frac{\ln \left[\left(\frac{x_{LK}}{x_{HK}} \right)_{D} \left(\frac{x_{HK}}{x_{LK}} \right)_{B} \right]}{\ln (\alpha_{LK})}$$

where:

 N_{M} = minimum number of theoretical stages in column

- q = heat to vaporize 1 mole of feed ÷ molar latent heat of feed
- α = relative volatility with respect to heavy key, computed as geometric mean of relative volatities of distillate and residue streams
- x = liquid mol fraction
- F, D, B = feed, distillate and residue respectively
- LK, HK = light key and heavy key respectively

[4]

[6]

4. An existing sieve tray is to be used to process a vapour flowrate of 4500 kg/h (density 2.85 kg/m³) and a liquid flowrate of 2800 kg/h (density 810 kg/m³). The column dimensions are as follows:

Tray type:	sieve tray - single pass	
Column diameter	D	0.80 m
Tray spacing	lt	0.45 m
Weir height	h _w	38 mm
Weir length	lw	0.56 m
Hole diameter	dh	6 mm
Downcomer clearance	h _{ap}	38 mm
Column cross-sectional area	A _c	0.50 m^2
Downcomer area	Ad	0.05 m ²
Net area	$A_n = A_c - A_d$	0.45 m ²
Active area	$A_a = A_c - 2A_d$	0.40 m ²
Total hole area	$A_h = 0.10A_a$	0.04 m ²
Tray metal thickness	t	2.4 mm

Calculate the following:

a) percentage flooding (% flooding)

Given:

percentage flooding = $100 \frac{u_n}{u_f}$

where:

 u_n is the actual gas velocity based on net area A_n

$$u_{f} = K_{1} \sqrt{\frac{\rho_{l} - \rho_{v}}{\rho_{v}}}$$

(ρ_v and ρ_l are the densities of vapour and liquid respectively)

note that K_1 must be read from the chart provided after calculating the F_{LV} factor:

$$F_{\rm LV} = \frac{L_{\rm W}}{V_{\rm W}} \sqrt{\frac{\rho_{\nu}}{\rho_l}}$$

 $(L_W \text{ and } V_W \text{ are the mass flow rates of vapour and liquid respectively, kg/s})$

CONTINUED

[7]

4

b) total tray pressure drop (ht) [mm]

Given: $h_t = h_d + (h_W + h_{OW}) + h_r$ [mm]

where:

hd = dry plate drop = 51 (u_h/C_{vo})² (ρ_v/ρ_l) [mm] u_h is the actual gas velocity through holes, based on total hole area A_h note that C_{vo} must be read from the chart provided h_{ow} = crest of liquid over the weir = 750(L_w/(ρ_l l_w))^{0.667} [mm] (L_w as kg/s) h_r = 12500/ ρ_l [mm]

c) height of liquid in the downcomer (hb) [mm]

```
Given:

h_b = (h_w + h_{ow}) + h_t + h_{dc} [mm]
```

where: $h_{dc} = 166(L_W/(\rho_l A_{ap}))^2$ [mm] (L_W as kg/s) and $A_{ap} = h_{ap} * l_W$ [m²]

d) downcomer residence time

Given:

$$t_r = \frac{A_d h_b \rho_l}{L_w}$$
 [sec] (L_W as kg/s, hb as metre)

Data Chart for calculating flooding velocity Chart for calculating discharge coefficient C_{vo} [7]

[6]

[5]

5. a) Sketch how the *moisture content* of a drying solid varies with time [2]
b) Write equations describing for the *drying rate* in terms of (i) the solid and (ii) the gas phases [2]
c) Sketch how the batch drying rate varies with moisture content [2]
d) Describe briefly, with reference to (a) and (c), the *constant drying rate* and *falling drying rate* periods [2]
e) Show that the *total drying time* in a batch drier, θ_T, can be expressed by

$$\theta_{\rm T} = \frac{L_{\rm S}}{{\rm SN}_{\rm CR}} \left\{ ({\rm X}_{\rm 1} - {\rm X}_{\rm C}) + ({\rm X}_{\rm C} - {\rm X}^*) \ln \frac{({\rm X}_{\rm C} - {\rm X}^*)}{({\rm X}_{\rm 2} - {\rm X}^*)} \right\}$$

where X_1 and X_2 are the moisture contents of the wet feed and dried product respectively, X_C and X^* are the critical and equilibrium moisture contents respectively, L_S is the mass of dry solid, S is the drying surface area, and N_{CR} is the constant drying rate.

State clearly any assumption that you may make.

f) Twelve hours are required under constant drying conditions to reduce the moisture content of a wet solid from 24% to 6% with a critical moisture content of 12% and an equilibrium moisture content of 3%. How long would it take to dry a similar material from 36% to 9%?

(All compositions are given on a dry basis)

TURN OVER

[5]

[12]

6. A power plant uses 360000 kg/h cooling water taken from a river nearby. After usage within the power plant, the cooling water has increased its temperature up to 40°C.

Environmental regulations impose that before the cooling water is discharged to the river it must be cooled down to 20°C. To this purpose, a forced draught countercurrent cooling tower is to be used.

Assuming that the wet bulb temperature of inlet air fed to the tower is 10°C and that the temperature of outlet air (nearly saturated) is 30°C, compute the following:

a) Air flow rate flowing through the tower;

[10]

b) Number of gas transfer units (NTU), with the aid of a graphical construction on the graph paper supplied, which must be attached to your answer book. [15]

Data:

1

Heat capacity of liquid water: 4.19 kJ/kg °C

Saturated Air Temperature °C	10	15	20	25	30	35	40	45
Enthalpy of Saturated Air-Water vapour mixture (kJ/kg)	29.5	42.4	57.9	77	100.6	130.3	167.8	215.6

Standard graph paper to be supplied (A4 size)

TURN OVER

TURN OVER

£

Flooding velocity, sieve plates

Discharge coefficient for sieve trays.

END OF PAPER