UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.Eng. M.Eng. M.SC.

Chemical Eng E849: Mass Transfer Operations

COURSE CODE	$:$ CENGE849
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{1 4 - M A Y - 0 2}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALIOWED	$: \mathbf{3}$ hours

UNIVERSITY OF LONDON
Chemical Engineering
E849

Each question carries a total of 25 marks distributed as shown []
Additional stationery provided: graph paper

1. An air stream containing ammonia $\left(\mathrm{NH}_{3}\right)$ is to be purified by continuous counter-current contact with clean water in a packed tower. The inlet gas contains 7% by volume of ammonia of which 99% is to be removed. The ammonia-free mass flowrate of air is $5000 \mathrm{~kg} / \mathrm{h} \mathrm{m}^{2}$.

The equilibrium solubility of ammonia in water on a molar ratio basis is given by:
$\mathrm{Y}_{\mathrm{A}}{ }^{*}=0.9 \mathrm{XA}_{\mathrm{A}}$
where $\mathrm{Y}_{\mathrm{A}}{ }^{*}$ is the mole ratio of ammonia in the gas phase and X_{A} is the mole ratio of ammonia in the liquid phase.

Calculate the following:
a) the minimum liquid solvent flow rate
b) the required height of the packed column when the liquid solvent flow rate is 2 times the minimum and assuming that the mass transfer coefficient is $\mathrm{K}_{\mathrm{OG}} \mathrm{a}=300 \mathrm{kmol} / \mathrm{h} \mathrm{m}^{3}$
(average molecular weight of air $=29 ;$ molecular weight of ammonia $=17$)
2. $10000 \mathrm{~kg} / \mathrm{hr}$ of a mixture containing 40% (mole) methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ and 60% (mole) water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is fed to a fractionating column to produce a distillate containing 90% (mole) methanol and a residue containing 90% (mole) water. The column is operating at 760 mmHg and is equipped with a total condenser and a partial reboiler. Assume that the feed, the distillate and the residue are all saturated liquids.

With the aid of a graphical construction on the diagram provided, which must be attached to your answer book, determine:
a) enthalpies of feed, distillate and residue
b) minimum reflux ratio $R \min$
c) number of theoretical stages for a reflux ratio $\mathrm{R}=1.5 \mathrm{Rmin}$
d) condenser and reboiler thermal duties for a reflux ratio $R=1.5 \mathrm{Rmin}$

Data
Enthalpy-concentration diagram and a y-x diagram for the methanol-water system provided.
3. A multicomponent light hydrocarbons mixture is to be fed as saturated liquid ($\mathrm{q}=1$) into a tray tower operating at 2 atm in conjunction with a total condenser and a partial reboiler. The composition of the feed is given in Table 1. The distillate will have a content of n-pentane equal to a molar fraction of 0.05 and negligible n -hexane; the bottom product (residue) will have a content of n butane equal to a molar fraction of 0.05 and negligible propane.

Table 1

All compositions are given in molar	
fractions	

Find the following:
a) composition of distillate and residue
b) bubble point temperature of residue, and dew point temperature of distillate
c) minimum number of theoretical stages

Data:
Relevant Antoine's constants are given in Table 2:
Table 2

	A	B	C
propane	15.72600	1872.46000	-25.16000
n-butane	15.67820	2154.90000	-34.42000
n-pentane	15.83330	2477.07000	-39.94000
n-hexane	15.83360	2697.55000	-48.78000

Antoine's Law: $\quad \ln \left(\mathrm{P}^{\mathrm{o}}\right)=\mathrm{A}-(\mathrm{B} /(\mathrm{T}+\mathrm{C}))$
where:
$\left[\mathrm{P}^{\circ}=\mathrm{mmHg}\right][\mathrm{T}=\mathrm{K}]$
Fenske's Equation:

$$
\mathrm{N}_{\mathrm{M}}+1=\frac{\ln \left[\left(\frac{\mathrm{x}_{\mathrm{LK}}}{\mathrm{x}_{\mathrm{HK}}}\right)_{\mathrm{D}}\left(\frac{\mathrm{x}_{\mathrm{HK}}}{\mathrm{x}_{\mathrm{LK}}}\right)_{\mathrm{B}}\right]}{\ln \left(\alpha_{\mathrm{LK}}\right)}
$$

where:
NM = minimum number of theoretical stages in column
$\mathrm{q} \quad=$ heat to vaporize 1 mole of feed \div molar latent heat of feed
$\alpha \quad=$ relative volatility with respect to heavy key, computed as geometric mean of relative volatities of distillate and residue streams
$\mathrm{x} \quad=$ liquid mol fraction
$\mathrm{F}, \mathrm{D}, \mathrm{B}=$ feed, distillate and residue respectively
LK, HK = light key and heavy key respectively
4. An existing sieve tray is to be used to process a vapour flowrate of $4500 \mathrm{~kg} / \mathrm{h}$ (density $2.85 \mathrm{~kg} / \mathrm{m}^{3}$) and a liquid flowrate of $2800 \mathrm{~kg} / \mathrm{h}$ (density $810 \mathrm{~kg} / \mathrm{m}^{3}$). The column dimensions are as follows:

Tray type:	sieve tray - single pass	
Column diameter	D	0.80 m
Tray spacing	I_{t}	0.45 m
Weir height	h_{W}	38 mm
Weir length	I_{w}	0.56 m
Hole diameter	d_{h}	6 mm
Downcomer clearance	h_{ap}	38 mm
Column cross-sectional area	A_{c}	$0.50 \mathrm{~m}^{2}$
Downcomer area	A_{d}	$0.05 \mathrm{~m}^{2}$
Net area	$\mathrm{A}_{\mathrm{n}}=\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{d}}$	$0.45 \mathrm{~m}^{2}$
Active area	$\mathrm{A}_{\mathrm{a}}=\mathrm{A}_{\mathrm{c}}-2 \mathrm{~A}_{\mathrm{d}}$	$0.40 \mathrm{~m}^{2}$
Total hole area	$\mathrm{A}_{\mathrm{h}}=0.10 \mathrm{~A}_{\mathrm{a}}$	$0.04 \mathrm{~m}^{2}$
Tray metal thickness	t	

Calculate the following:
a) percentage flooding (\% flooding)

Given:
percentage flooding $=100 \frac{u_{n}}{u_{f}}$
where:
u_{n} is the actual gas velocity based on net area A_{n}

$$
\mathrm{u}_{\mathrm{f}}=\mathrm{K}_{\mathrm{l}} \sqrt{\frac{\rho_{l}-\rho_{v}}{\rho_{v}}}
$$

$$
\text { (} \rho_{v} \text { and } \rho_{l} \text { are the densities of vapour and liquid respectively) }
$$

note that K_{1} must be read from the chart provided after calculating the F_{LV} factor:

$$
\mathrm{F}_{\mathrm{LV}}=\frac{\mathrm{L}_{\mathrm{w}}}{\mathrm{~V}_{\mathrm{w}}} \sqrt{\frac{\rho_{\mathrm{v}}}{\rho_{l}}}
$$

(L_{W} and V_{W} are the mass flow rates of vapour and liquid respectively, kg / s)
b) total tray pressure drop $\left(\mathrm{h}_{\mathrm{t}}\right)[\mathrm{mm}]$

Given:
$h_{t}=h_{d}+\left(h_{W}+h_{o w}\right)+h_{r} \quad[m m]$
where:
$\mathrm{h}_{\mathrm{d}}=$ dry plate drop $=51\left(\mathrm{u}_{\mathrm{h}} / \mathrm{C}_{\mathrm{VO}}\right)^{2}\left(\rho_{V} / \rho_{l}\right) \quad[\mathrm{mm}]$
u_{h} is the actual gas velocity through holes, based on total hole area A_{h} note that C_{Vo} must be read from the chart provided
$h_{\text {OW }}=$ crest of liquid over the weir $=750\left(\mathrm{~L}_{\mathrm{W}} /\left(\rho_{l} \mathrm{l}_{\mathrm{W}}\right)\right)^{0.667} \quad[\mathrm{~mm}] \quad\left(\mathrm{L}_{\mathrm{W}}\right.$ as kg / s)
$\mathrm{h}_{\mathrm{r}}=12500 / \rho_{l} \quad[\mathrm{~mm}]$
c) height of liquid in the downcomer (hb) [mm]

Given:
$h_{b}=\left(h_{W}+h_{o w}\right)+h_{t}+h_{d c} \quad[m m]$
where:
$h_{d c}=166\left(L_{W} /\left(\rho_{i} A_{a p}\right)\right)^{2}[\mathrm{~mm}] \quad\left(L_{W}\right.$ as $\left.\mathrm{kg} / \mathrm{s}\right)$
and $A_{a p}=h_{a p} * l_{w} \quad\left[m^{2}\right]$
d) downcomer residence time

Given:
$\mathrm{t}_{\mathrm{r}}=\frac{\mathrm{A}_{\mathrm{d}} \mathrm{h}_{\mathrm{b}} \rho_{l}}{\mathrm{~L}_{\mathrm{w}}}[\mathrm{sec}]\left(\mathrm{L}_{\mathrm{W}}\right.$ as $\mathrm{kg} / \mathrm{s}, \mathrm{h}_{\mathrm{b}}$ as metre)

Data
Chart for calculating flooding velocity
Chart for calculating discharge coefficient C_{vo}
5. a) Sketch how the moisture content of a drying solid varies with time
b) Write equations describing for the drying rate in terms of (i) the solid and (ii) the gas phases
c) Sketch how the batch drying rate varies with moisture content
d) Describe briefly, with reference to (a) and (c), the constant drying rate and falling drying rate periods
e) Show that the total drying time in a batch drier, θ_{T}, can be expressed by

$$
\theta_{\mathrm{T}}=\frac{\mathrm{L}_{\mathrm{S}}}{\operatorname{SN}_{\mathrm{CR}}}\left\{\left(\mathrm{X}_{1}-\mathrm{X}_{\mathrm{c}}\right)+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}^{*}\right) \ln \frac{\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}^{*}\right)}{\left(\mathrm{X}_{2}-\mathrm{X}^{*}\right)}\right\}
$$

where X_{1} and X_{2} are the moisture contents of the wet feed and dried product respectively, X_{C} and X^{*} are the critical and equilibrium moisture contents respectively, LS is the mass of dry solid, S is the drying surface area, and $N_{C R}$ is the constant drying rate.
State clearly any assumption that you may make.
f) Twelve hours are required under constant drying conditions to reduce the moisture content of a wet solid from 24% to 6% with a critical moisture content of 12% and an equilibrium moisture content of 3%. How long would it take to dry a similar material from 36% to 9% ?
(All compositions are given on a dry basis)
6. A power plant uses $360000 \mathrm{~kg} / \mathrm{h}$ cooling water taken from a river nearby. After usage within the power plant, the cooling water has increased its temperature up to $40^{\circ} \mathrm{C}$.
Environmental regulations impose that before the cooling water is discharged to the river it must be cooled down to $20^{\circ} \mathrm{C}$. To this purpose, a forced draught countercurrent cooling tower is to be used.
Assuming that the wet bulb temperature of inlet air fed to the tower is $10^{\circ} \mathrm{C}$ and that the temperature of outlet air (nearly saturated) is $30^{\circ} \mathrm{C}$, compute the following:
a) Air flow rate flowing through the tower;
b) Number of gas transfer units (NTU), with the aid of a graphical construction on the graph paper supplied, which must be attached to your answer book.

Data:
Heat capacity of liquid water: $4.19 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$

Saturated Air Temperature ${ }^{\circ} \mathrm{C}$	10	15	20	25	30	35	40	45
Enthalpy of Saturated Air-Water vapour mixture $(\mathrm{kJ} / \mathrm{kg})$	29.5	42.4	57.9	77	100.6	130.3	167.8	215.6

Standard graph paper to be supplied (A4 size)

TURN OVER

E-849 Exam paper 2002: Question number 2

TURN OVER

Flooding velocity, sieve plates

E 849-2002 Exams - Question 4 - Diagrams to be Provided

Discharge coefficient for sieve trays.

