UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

1

ş

Chemical Eng E836: Chemical Reaction Engineering

COURSE CODE	: CENGE836
UNIT VALUE	: 0.50
DATE	: 16-MAY-06
TIME	: 10.00
TIME ALLOWED	: 3 Hours

Answer FOUR questions. Only the first four answers will be marked. ALL questions carry a total of 25 each, distributed as shown []

Graph paper provided.

Where numerical integration is required for any question use Simpson's rule as stated below.

For N+1 points where N is even,

$$\int_{x_0}^{x_N} f(X) dX = \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \dots + 4f_{N-1} + f_N)$$

where $h = \frac{X_N - X_O}{N}$

1

- The elementary liquid phase reaction $A \rightarrow B$ takes place in two continuous a) stirred reactors connected in series. The concentration of reactant A in the inlet to the first reactor is 1 mol/dm³, whilst in its outlet is 0.5mol/dm³. If the volume of the second reactor is four times that of the first, find the exit concentration from the second reactor. [15]
- If the order of the reactors is reversed, what is the final exit concentration?[10] **b**)

2

A reaction with the stoichiometry $A \rightarrow B$ displays the behaviour indicated below.

-r _A (mol/dm ³ min)
2
5
12
25
40
16
10
6
5
4

We wish to operate a reactor (or a combination of reactors) in such a way that we get 90% conversion of a feed stream in which the concentration of A is 20mol/dm³. If the flow rate is 100dm³/min find the reactor volume:

CONTINUED

- a) for a PFR
 [8]

 b) for a CSTR
 [7]
- c) for a combination of one PFR and one CSTR which minimises total reactor volume [10]

3

The elementary liquid phase reaction system

A → B	(with reaction rate constant $k_1 = 0.001 \text{ s}^{-1}$)
$D \rightarrow C$	

- B → C (with reaction rate constant $k_2 = 0.003 \text{ s}^{-1}$) B → D (with reaction rate constant $k_2 = 0.002 \text{ s}^{-1}$)
- $B \rightarrow D$ (with reaction rate constant $k_3 = 0.002 \text{ s}^{-1}$)

is carried out in a batch reactor in which initially there is pure A.

a)	Derive an equation for the concentration of A as a function of time.	[4]
b)	What is the ratio C_A/C_{Ao} after 1.5 min?	[3]
c)	Derive an equation for the concentration of B as a function of time.	[10]
d)	If $C_{Ao}=0.2 \text{ mol/dm}^3$, what is the concentration of B after 2 min?	[5]
e)	At what time is the concentration of B at a maximum?	[3]

4

a) What is Knudsen diffusion?

[5]

ĉ

- b) Consider a porous catalyst pellet where a reaction occurs and mass/heat transfer resistances exist (both intraphase and interphase). Sketch the radial concentration and temperature profiles for an endothermic and exothermic reaction and explain why the profiles have these forms. [10]
- c) Reactant A, which is present in dilute concentrations, is diffusing at steady state from the bulk fluid through a stagnant film of B of thickness δ to the external surface of a spherical nonporous catalyst pellet with diameter d_p. Since $\delta \ll d_p$ we can neglect the curvature of the film. Determine the concentration profile (C_A as a function of film co-ordinate) and the molar flux of A (W_{Az}). [10]

Additional Information Molecular Diffusivity: $D_{AB} = 10^{-6} \text{ m}^2/\text{s}$ Film thickness: $\delta = 10^{-6} \text{ m}$ Total concentration: $C_{T0} = 100 \text{ mol/m}^3$ Mole fraction of A at the bulk: $y_{A,bulk} = 0.9$ Mole fraction of A at the surface of the pellet: $y_{A,surface} = 0.2$

PLEASE TURN OVER

This question concerns the application of plug-flow reactors for biocatalytic reactions.

(a) Derive an analytical expression (based on a mass balance) to describe the productivity of an enzyme catalysed reaction in a plug-flow reactor. Assume Michaelis-Menten kinetics apply and state any other assumptions used.

[15]

- (b) Why is this type of reactor preferable for industrial operation rather than a continuous stirred tank reactor? [5]
- (c) For industrial operation why are such reactors frequently used with a recycle? [5]

END OF PAPER

3

5