UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Chemical Eng E836: Chemical Reaction Engineering

COURSE CODE : CENGE836

UNIT VALUE : 0.50

DATE

: 21-MAY-03

TIME

: 10.00

TIME ALLOWED : 3 Hours

Answer 4 out of 5 questions. Only the first four answers will be marked. ALL questions carry a total of 25 each, distributed as shown []

- Reactant A produces R and S in the liquid phase by a parallel reaction scheme. The reaction to R is 2^{nd} order and the reaction to S is 1^{st} order. The feed $(C_{Ao} = 1 \text{ mol/m}^3, C_{Ro} = C_{So} = 0 \text{ mol/m}^3)$ enters two CSTRs in series $(\tau_1 = 2.5 \text{ min}, \tau_2 = 10 \text{ min})$. Knowing the concentrations in the first reactor $(C_{Al} = 0.4 \text{ mol/m}^3, C_{Rl} = 0.4 \text{mol/m}^3, C_{Sl} = 0.2 \text{ mol/m}^3)$, find the concentrations of A, R and S in the outlet of the second reactor.
- Consider an elementary, liquid phase irreversible reaction A \rightarrow B. Pure, liquid reactant A enters a CSTR with a volumetric flowrate 2.52×10^{-6} m³/min and temperature 20° C. After that it flows to a PFR connected in series with the CSTR. The conversion of A at the exit of the PFR is 97%. Both reactors operate adiabatically. Calculate the volume of the PFR if the volume of the CSTR is 0.378 m³. Additional information: ΔH°_{R} =-0.4 kJ/g, c_{pA} = c_{pB} = 2 J/g K, $k = 7.25 \times 10^{10}$ e (-14570/T) s⁻¹ (T is in K). [25]
- **3.** The elementary, liquid phase reaction

$A+B\rightarrow P$

with a rate constant $k = 5.2 \text{ dm}^3/\text{ mol h}$, is taking place in a continuous reactor. The initial concentrations are $C_{Ao} = C_{Bo} = 1.23 \text{ mol/dm}^3$.

- a) What is the volume of a PFR required if a 95% conversion of A and a production of P equal to 322 mol/h are desired?
- b) What is the volume of a CSTR required for the same inlet and outlet conditions as above? [25]
- 4. The irreversible, elementary gas phase reaction 2A→2B is carried out isothermally in a fluidised catalyst reactor which behaves as a CSTR and contains 100kg of catalyst. 50% conversion is obtained for pure A entering at a pressure of 20 atm. There is virtually no pressure drop in the fluidised reactor. It is proposed to use a fixed bed reactor containing the same catalyst weight immediately after the fluidised bed reactor. The pressure drop parameter is α = 0.009 kg⁻¹. What is the conversion of the reaction mixture exiting the fixed bed reactor? [25]

PLEASE TURN OVER

E836 2

This question concerns biocatalytic reactor kinetics.

- a) Derive the expression (based on a material balance) to describe the productivity of a batch stirred tank reactor. State the assumptions used. [15]
- b) Why is this type of reactor preferable for industrial operation than a plugflow reactor or a continuous stirred tank reactor? [5]
- c) For industrial operation why is the batch stirred tank usually used in fed-batch mode? [5]

END OF PAPER

E836

3