UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Eng. M.Eng.

Chemical Eng E836: Chemical Reaction Engineering

```
COURSE CODE
    : CENGE836
UNIT VALUE : 0.50
DATE : 21-MAY-03
TIME : 10.00
TIME ALLOWED : 3 Hours
```


Answer 4 out of 5 questions. Only the first four answers will be marked.
 ALL questions carry a total of 25 each, distributed as shown []

1.

Reactant A produces R and S in the liquid phase by a parallel reaction scheme. The reaction to R is $2^{n d}$ order and the reaction to S is $1^{s t}$ order. The feed $\left(\mathrm{C}_{A o}=1 \mathrm{~mol} / \mathrm{m}^{3}, \mathrm{C}_{R o}=\mathrm{C}_{S o}=0 \mathrm{~mol} / \mathrm{m}^{3}\right.$) enters two CSTRs in series ($\tau_{1}=2.5$ $\min , \tau_{2}=10 \mathrm{~min}$). Knowing the concentrations in the first reactor ($\mathrm{C}_{A 1}=0.4$ $\mathrm{mol} / \mathrm{m}^{3}, \mathrm{C}_{R 1}=0.4 \mathrm{~mol} / \mathrm{m}^{3}, \mathrm{C}_{S 1}=0.2 \mathrm{~mol} / \mathrm{m}^{3}$), find the concentrations of A, R and S in the outlet of the second reactor.
2.

Consider an elementary, liquid phase irreversible reaction $\mathrm{A} \rightarrow \mathrm{B}$. Pure, liquid reactant A enters a CSTR with a volumetric flowrate $2.52 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{min}$ and temperature $20^{\circ} \mathrm{C}$. After that it flows to a PFR connected in series with the CSTR. The conversion of A at the exit of the PFR is 97%. Both reactors operate adiabatically. Calculate the volume of the PFR if the volume of the CSTR is $0.378 \mathrm{~m}^{3}$. Additional information: $\Delta H^{\circ}{ }_{\mathrm{R}}=-0.4 \mathrm{~kJ} / \mathrm{g}, \mathrm{c}_{\mathrm{pA}}=\mathrm{c}_{\mathrm{pB}}=2 \mathrm{~J} / \mathrm{g} \mathrm{K}$, $\mathrm{k}=7.25 \times 10^{10} \mathrm{e}^{(-14570 / T)} \mathrm{s}^{-1}(\mathrm{~T}$ is in K$)$.
3.

The elementary, liquid phase reaction

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

with a rate constant $\mathrm{k}=5.2 \mathrm{dm}^{3} / \mathrm{mol} \mathrm{h}$, is taking place in a continuous reactor. The initial concentrations are $\mathrm{C}_{\mathrm{Ao}}=\mathrm{C}_{\mathrm{Bo}}=1.23 \mathrm{~mol} / \mathrm{dm}^{3}$.
a) What is the volume of a PFR required if a 95% conversion of A and a production of P equal to $322 \mathrm{~mol} / \mathrm{h}$ are desired?
b) What is the volume of a CSTR required for the same inlet and outlet conditions as above?
4.

The irreversible, elementary gas phase reaction $2 A \rightarrow 2 B$ is carried out isothermally in a fluidised catalyst reactor which behaves as a CSTR and contains 100 kg of catalyst. 50% conversion is obtained for pure A entering at a pressure of 20 atm . There is virtually no pressure drop in the fluidised reactor. It is proposed to use a fixed bed reactor containing the same catalyst weight immediately after the fluidised bed reactor. The pressure drop parameter is $\alpha=0.009 \mathrm{~kg}^{-1}$. What is the conversion of the reaction mixture exiting the fixed bed reactor?

PLEASE TURN OVER

This question concerns biocatalytic reactor kinetics.
a) Derive the expression (based on a material balance) to describe the productivity of a batch stirred tank reactor. State the assumptions used.
b) Why is this type of reactor preferable for industrial operation than a plugflow reactor or a continuous stirred tank reactor?
c) For industrial operation why is the batch stirred tank usually used in fed-batch mode?

END OF PAPER

