UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

B.Eng.

1

ذ

Chemical Eng E879: Biochemical Reaction Engineering

COURSE CODE	: CENGE879
UNIT VALUE	: 0.50
DATE	: 11-MAY-05
ТІМЕ	: 10.00
TIME ALLOWED	: 3 Hours

05-C0198-3-30 © 2005 University College London

TURN OVER

Answer FOUR QUESTIONS. Only the first four answers given will be marked. ALL questions carry a total of 25 MARKS each, distributed as shown []

۲

1		
1.	This question concerns the use of immobilised enzymes. Ensure you explyour answers in sufficient depth.	ain
(a)	What is the rationale for enzyme immobilisation?	[4]
(b)	What problems arise when presenting enzymes in this form for potential process implementation and industrial operation?	[7]
(c)	Describe diffusional limitation in terms of effectiveness factor, Thiele modulus and Damkohler number.	[10]
(d)	What types of reactors are best suited to operation with an immobilised enzyme?	[4]
2.	This question concerns the application of <i>in-situ</i> product removal (ISPR) to biocatalytic processes. Ensure you explain your answers in sufficient dep	to th.
(a)	Describe the concept of ISPR as applied to biocatalysis.	[12]
(b)	Under what circumstances is it beneficial to implement ISPR?	[4]
(c)	What are the constraints on implementation of ISPR on scale-up?	[5]
(d)	Draw and describe a flowsheet for a typical ISPR-based biocatalytic proce using process-medium recycle.	ess [4]
3.	This question concerns the kinetics of enzyme-catalysed chemical conversions. Ensure you explain your answers in sufficient depth.	
(a)	Derive the Michaelis-Menten expression to describe the conversion of a single substrate to product in solution.	[15]
(b)	What significant feature characterises such kinetics and how does this affe the performance of a continuous stirred tank reactor compared with a continuous plug flow reactor?	ect [5]
(c)	Under what circumstances will the expression derived in (a) become invalid?	[5]

PLEASE TURN OVER

٦¢

i

6

2

4. This question concerns the application of biocatalysis to chemical processing. Ensure you explain your answers in sufficient depth. ۶ċ.

- (a) Draw a typical flowsheet for an isolated-enzyme based process for chemical synthesis. [5]
- (b) In such a process, what are the key capital and operating costs and outline the role of rDNA technology in reducing these costs? [10]
- (c) What are the key features of the chemical market served by biocatalysis? [5]
- (d) What type of reactions are most commonly mediated by biocatalysis? [5]
- 5. Hinshelwood and Askey studied the thermal decomposition of dimethyl ether in a batch reactor. For pressures above 0.5 atm the decomposition was first order and proceeded as follows:

$$(CH_3)_2 O \rightarrow CH_4 + CO + H_2$$

The expression found for the rate constant for the first-order decomposition of dimethyl ether was

$$\ln k = 30.36 - \frac{29440}{T}$$

where k has the units of s^{-1} , T is in K.

It is proposed to carry this same reaction out in a perfectly mixed flow reactor operated at 550°C and 1 atm pressure. Calculate the respective space velocities (evaluated at the temperature and pressure of the reactor) which are required to achieve conversions of 20%, 50% and 80% of pure dimethyl ether in the perfectly mixed flow reactor. Assume that the mixture behaves as an ideal gas. [25]

6. A liquid phase first-order reaction A→B takes place in two reactors of the same volume which are connected in series. There is a constant feed to the first reactor with flowrate 75 m³/h and reactant concentration C_{Ao} = 1.6 mol/m³. The reactant concentration at the outlet of the second reactor is 0.1 mol/m³. The reaction rate constant is k = 0.4 h⁻¹. After several days operation, inlet and outlet flows are stopped. The reaction is allowed to continue for time t_F. At that point (t = t_F), both reactors are emptied into a common container. In order for the product quality to be maintained, the reactant concentration in the mixture of the container must be 0.1 mol/m³. Find the time t_F.

END OF PAPER