University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

Chemical Eng E876: Advanced Safety and Loss Prevention

COURSE CODE	: CENGE876
UNIT VALUE	: 0.50
DATE	: 27-MAY-03
TIME	: 10.00
TIME ALLOWED	: 3 Hours

TURN OVER

ŧ

Answer FOUR questions only with no more than TWO questions from each SECTION. Only the first FOUR answers will be marked. ALL questions carry a total of 25 MARKS each, distributed as shown []

SECTION A

ì

ł

1.	i)	Define the key elements of successful health and safety management system.	[10]
	ii)	The results from measuring performance measurements combined information obtained from health and safety audits can be used to improve health and safety management. Describe ways in which effective audit programmes can benefit an organisation. [15])
2.	Inhere	nt safety is the best way of ensuring safety.	
	i)	Identify the principal techniques of inherent safe design that are considered to limit hazards in a process plant.	[10]
	ii)	Describe the main constraints relating to the development of inherently safer plants.	[15]
3.	i)	What are the two main classification groups of devices that can be used to provide pressure relief, and give one example of each?	[4]
	ii)	What are the advantages and disadvantages of using bursting discs?	[9]
	iii)	Figure 1 shows a vessel V-01 operating at 20 barg and 25°C. The vessel design pressure is 29 barg and has a relief valve PSV-001 protecting the vessel V-01 against overpressure. Identify credible scenarios which should be considered to determine the minimum orifice size of the relief valve required.	[12]

CONTINUED

•

ï

ŧ

Figure 1. Process and instrumentation flow diagram for a pressurised vessel

SECTION B

4.		plain (i) what quantitative risk assessment (QRA) is, and (ii) how u would use it.	[25]
5.	i)	In evaluating explosion hazards what are	
		(a) the factors controlling the magnitude of the event	[6]
		(b) it's principal effects	[3]
	Ex	plain how these effects can be mitigated.	[3]
	ii)	Compare and contrast the usual extremes of hydrocarbon fire giving	
		(a) their essential characteristics	[7]
		(b) their principal effects	[6]
		PLEASE TURN ON	/ER

3

6.	Explain what is meant by the term 'Availability' in the context of process safety by expressing it in terms of a simple algebraic equation carefully explaining the symbols used.		
	i)	Write down an expression for the total availability, A_T of a system comprising 'n' components of equal availability, A in terms of a Binomial expansion series incorporating the first 4 terms.	[4]
	ii)	Figure 2 shows a process and instrumentation flow diagram for a purification plant. Draw the corresponding availability block diagram and calculate the total process availability given the following component availabilities.	[16]

CONTINUED

¥ .

ć

Availability

1

ί

Pressure switch (PS)	0.9926
Level switch (LS)	0.9862
Emergency shutdown valve 1 (ESDV1)	0.9824
Temperature controller 1 (TC1)	0.9876
Temperature controller 2 (TC2)	0.9524
Emergency shutdown valve 1 (ESDV1)	0.9867

• • •