UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Eng.

٩

ì

Chemical Eng E875: Advanced Material Processes and Product Engineering

COURSE CODE	:	CENGE875
UNIT VALUE	:	0.50
DATE	:	19-MAY-06
ТІМЕ	:	10.00
TIME ALLOWED	:	3 Hours

Please answer **Question 1** (Part A), one question from Part B and two questions from Part C; in total four questions. Only the first 4 questions answered will be marked.

The maximum mark of question 1 (PART A) is 30 marks, distributed as indicated. The maximum mark of each question of Part B is 20 marks, distributed as indicated. The maximum mark of each question in Part C is 15 marks, distributed as indicated. <u>The total maximum mark is 80.</u> Graph Paper Provided

PART A

1.

i) Derive the following equation for the solubility, expressed as mole-fraction, of a solid compound (2) in a supercritical fluid (1):

$$y_{2} = \frac{P_{2}^{sati}}{P} \frac{\left[\varphi_{2}^{sat} exp\left\{\int_{P_{2}}^{P} \frac{U_{2}^{s}}{RT} dP\right\}\right]}{\varphi_{2}}$$

where P_2^{sat} is the sublimation pressure of 2 at the temperature T, P is the total pressure, φ_2^{sat} is the fugacity coefficient of 2 as saturated vapour at temperature T, φ_2 is the fugacity coefficient of 2 in the supercritical phase at temperature T, υ_2^s is the molar volume of component 2 as a solid and R is the universal gas constant $(R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} = 83.14 \text{ bar cm}^3 \text{ mol}^{-1} \text{ K}^{-1}).$ [7]

ii) The fugacity coefficient φ_2 is given by the following formula using the Peng – Robinson Equation of State:

$$\ln \varphi_{2} = \frac{b_{2}}{b_{mix}} \left(\frac{pV_{m}}{RT} - 1 \right) - \ln \left(\frac{p(V_{m} - b_{mix})}{RT} \right)$$
$$- \frac{a_{mix}}{2\sqrt{2}b_{mix}RT} \left(\frac{2\sum_{i} y_{i}a_{i2}}{a_{mix}} - \frac{b_{2}}{b_{mix}} \right) \times \ln \left(\frac{V_{m} + (1 + \sqrt{2})b_{mix}}{V_{m} + (1 - \sqrt{2})b_{mix}} \right)$$

CONTINUED

ę

Making reasonable assumptions simplify this formula to the following one:

$$\ln \varphi_{2} = \ln \left(\frac{RT}{(V_{m} - b_{1})P} \right) + \frac{b_{2}}{b_{1}} \left(\frac{PV_{m}}{RT} - 1 \right) - \frac{a_{1}}{2\sqrt{2}RTb_{1}} \left(\frac{2a_{12}}{a_{1}} - \frac{b_{2}}{b_{1}} \right) \mathbf{x}$$

$$\ln \left(\frac{V_{m} + (1 + \sqrt{2})b_{1}}{V_{m} + (1 - \sqrt{2})b_{1}} \right)$$
[4]

iii) Use the equation for the solubility and the above simplified formula for φ_2 , in order to calculate the solubility of a component (2) with the following properties in supercritical CO₂ (1), at two temperature levels, 305 K and 315 K, and two pressures, 65 bar and 80 bar (four sets of conditions):

$$P_2^{\text{sat}}$$
 at 305 K: 6.5 x 10⁻⁶ bar, P_2^{sat} at 315 K: 12.9 x 10⁻⁶ bar,
 $v_2^s = 138.2 \text{ cm}^3 \text{ mol}^{-1}$

Critical Pressure and Temperature of component 2: 30 bar and 826 K Acentric factor of component 2: $\omega_2 = 0.406$. Additional Data: Critical Pressure and Temperature of CO₂: 73.8 bar and 304.1K Acentric factor of CO₂: $\omega_1 = 0.225$ Interaction coefficient between CO₂ and 2: k_{12} =0.09 In order to calculate φ_2 you may use the PV plot for CO₂ in the following page. [15]

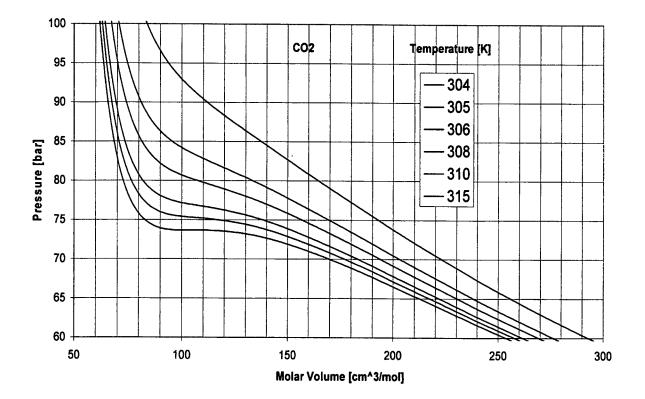
iv) Calculate the ratios of the solubility at 80 bar over this at 65 bar for both temperatures. Compare the ratios and comment on your results. [4]

For any part of question 1, you may use the following equations:

$$\ln \varphi_2 = \int_{O}^{P} \left[\frac{\overline{\upsilon_2}}{RT} - \frac{1}{P} \right] dP$$

Peng – Robinson Equation of State:

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2 + 2bV_m - b^2}$$


where
$$a = \frac{0.45724RT_c^2}{P_c} \left(1 + f\omega \left(1 - \sqrt{\frac{T}{T_c}}\right)\right)^2$$

CENGE875

TURN OVER

$$f\omega = 0.37464 + 1.54226\omega - 0.26992\omega^2$$

$$b = \frac{0.07780RT_c}{P_c}$$
$$b_{mix} = \sum_i y_i b_i$$
$$a_{mix} = \sum_i \sum_j y_i y_j a_{ij} (1 - k_{ij})$$
$$a_{ij} = (a_i . a_j)^{\frac{1}{2}}$$

PLEASE TURN OVER

e4

4

PART B

3

.

PARI	В			
2. i)	What is the kinetic effect of pressure on chemical reactions? Explain its origin and name the characteristic quantity that determines the kinetic effect. [5]			
ii)	Explain the solvent effect of pressure on chemical reactions and its origin. Based on that, explain the dramatic effect of pressure on chemical reactions in near critical and supercritical media. [5]			
iii)	Describe the mechanism of intumescence in flame retardant coatings. [10]			
2				
3. i)	Explain the principle of lithography, as well as the terms positive and negative resist. [5]			
ii)	Draw a typical sensitivity curve and define the term contrast for both resist types. [5]			
iii)	Present a schematic model of polymer dissolution and formulate the differential equations describing the process. [10]			
PART C				
4.				
i)	Name and briefly describe the steps of concept generation. [10]			
ii)	Expand further on concept classification tree and concept combination table. [5]			

5.

i)	Name and briefly describe the steps of concept screening and concept sc	oring.
-	Explain the differences between the corresponding steps.	[10]

- ii) Give a schematic overview of the Design for Manufacturing (DFM) methodology. [5]
- 6.

i)	Name and briefly explain the ways of prototypes classification.	[4]
ii)	Name and briefly discuss the five principles of prototyping.	[7]
iii)	Name and briefly discuss the steps in planning for prototypes.	[4]

END OF PAPER