University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

Coll Dip M.Eng.

Chemical Eng E875: Advanced Material Processes and Product Engineering

COURSE CODE : CENGE875

UNIT VALUE $\quad 0.50$

DATE : 11-MAY-04

TIME $\quad: 10.00$

TIME ALLOWED : 3 Hours

Answer question 1 (PART A), one question from Part B and two questions from Part C; in total four questions.

The maximum mark of question 1 (PART A) is $\mathbf{3 0}$ marks, distributed as indicated []. The maximum mark of each question of Part B is 20 marks, distributed as indicated []. The maximum mark of each question in Part C is 15 marks, distributed as shown []. The total maximum mark is $\mathbf{8 0}$.

PART A
1.

Derive the following equation for the solubility, expressed as mole-fraction, of a solid compound (2) in a supercritical fluid (1):

where $P_{2}^{\text {sat }}$ is the sublimation pressure of 2 at the temperature T, P is the total pressure, $\varphi_{2}^{\text {sat }}$ is the fugacity coefficient of 2 as saturated vapour at temperature T, φ_{2} is the fugacity coefficient of 2 in the supercritical phase at temperature T, v_{2}^{S} is the molar volume of component 2 as a solid and R is the universal gas constant ($R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=83.14 \mathrm{bar} \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$).

The fugacity coefficient φ_{2} is given by the following formula using the Peng Robinson Equation of State:

$$
\begin{gathered}
\ln \varphi_{2}=\frac{b_{2}}{b_{m i x}}\left(\frac{p V_{m}}{R T}-1\right)-\ln \left(\frac{p\left(V_{m}-b_{m i x}\right)}{R T}\right) \\
-\frac{a_{m i x}}{2 \sqrt{2} b_{m i x} R T}\left(\frac{2 \sum_{i} y_{i} a_{i 2}}{a_{m i x}}-\frac{b_{2}}{b_{m i x}}\right) \times \ln \left(\frac{V_{m}+(1+\sqrt{2}) b_{m i x}}{V_{m}+(1-\sqrt{2}) b_{m i x}}\right)
\end{gathered}
$$

1. continued

Making reasonable assumptions simplify this formula to the following one:

$$
\begin{align*}
& \ln \varphi_{2}=\ln \left(\frac{R T}{\left(V_{m}-b_{1}\right) P}\right)+\frac{b_{2}}{b_{1}}\left(\frac{P V_{m}}{R T}-1\right) \\
& -\frac{a_{1}}{2 \sqrt{2} R T b_{1}}\left(\frac{2 a_{12}}{a_{1}}-\frac{b_{2}}{b_{1}}\right) \times \ln \left(\frac{V_{m}+(1+\sqrt{2}) b_{1}}{V_{m}(1-\sqrt{2}) b_{1}}\right) \tag{4}
\end{align*}
$$

Use the equation for the solubility and the above simplified formula for φ_{2}, in order to calculate the solubility of a component (2) with the following properties in supercritical CO_{2} (1), at two temperature levels, 305 K and 315 K , and two pressures, 65 bar and 80 bar, each time (four sets of conditions):
$P_{2}^{\text {sat }}$ at $305 \mathrm{~K}: 6.5 \times 10^{-6}$ bar, $P_{2}^{\text {sat }}$ at $315 \mathrm{~K}: 12.9 \times 10^{-6}$ bar,
$v_{2}^{S}=138.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
Critical Pressure and Temperature of component 2: 30 bar and 826 K
Accentric factor of component 2: $\omega_{2}=0.406$.
Additional Data: Critical Pressure and Temperature of $\mathrm{CO}_{2}: 73.8$ bar and 304.1 K
Accentric factor of $\mathrm{CO}_{2}: \omega_{1}=0.225$
Interaction coefficient between CO_{2} and 2: $k_{12}=0.09$
In order to calculate φ_{2} you may use the $P V$ plot for CO_{2} on the following page.

Calculate the ratios of the solubility at 80 bar over this at 65 bar for both temperatures. Compare the ratios and comment on your results.

For any part of question 1, you may use the following equations:
$\ln \varphi_{2}=\int_{0}^{P}\left[\frac{\overline{v_{2}}}{R T}-\frac{1}{P}\right] d P$
Peng - Robinson Equation of State:

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}+2 b V_{m}-b^{2}}
$$

where $a=\frac{0.45724 R T_{c}^{2}}{P_{c}}\left(1+f \omega\left(1-\sqrt{\frac{T}{T_{c}}}\right)\right)^{2}$

1. continued

$$
\begin{aligned}
& f \omega=0.37464+1.54226 \omega-0.26992 \omega^{2} \\
& b=\frac{0.07780 R T_{c}}{P_{c}} \\
& b_{\text {mix }}=\sum_{i} y_{i} b_{i} \\
& a_{\text {mix }}=\sum_{i} \sum_{j} y_{i} y_{j} a_{i j}\left(1-k_{i j}\right) \\
& a_{i j}=\left(a_{i} \cdot a_{j}\right)^{1 / 2}
\end{aligned}
$$

PART B

2.

How do red phosphorus and phosphorus compounds act as a flame retardant?

Halogen-containing formulations are widely used as flame retardants.
Explain their retardation mechanism and why attempts are being made to replace them.

Describe the general mechanisms involved in polymer decomposition.
What is meant by the following terms in relation to chain-scission mechanisms:
i) Intramolecular H-Transfer
ii) Intermolecular H -Transfer

Use reaction schemes in your answer.
3.

Explain the principle of lithography, as well as the terms positive and negative resist.

Draw a typical sensitivity curve and define the term contrast for both resist types.

Derive an equation describing the dependence of the average molar mass of the resist upon the radiation dose in lithography.

Define the characteristic quantity G and explain how it can be estimated.

PART C

4.

a) What is a concept combination table? Explain how it works, its usefulness and useful guidelines.
b) Name and briefly describe the steps of concept screening and concept scoring. Explain the differences between the corresponding steps.
5.
a) Name and briefly explain the ways of prototypes classification.
b) Name and briefly discuss the five principles of prototyping.
c) Name and briefly discuss the steps in planning for prototypes.
6.
a) Give a schematic overview of the Design for Manufacturing (DFM) methodology.
b) In the framework of DFM, describe briefly the methodology for estimating manufacturing costs. Explain the terms of fixed costs and variable costs. What is the bill of materials?

