UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Chemical Eng E875: Advanced Material Processes and Product Engineering

COURSE CODE	: CENGE875
UNIT VALUE	: 0.50
DATE	: 19-MAY-03
TIME	: 10.00
TIME ALLOWED	: 3 Hours

03-C0198-3-40 © 2003 University College London

TURN OVER

ANSWER question 1 from Part A (compulsory), one question from Part B and two questions from Part C. All questions carry a total of 25 marks, distributed as shown []. Only the first four answers will be marked.

PART A

1.

- i) Derive an equation for the solubility, expressed as mole-fraction (y_2) , of a solid compound 2 in a supercritical fluid 1, as a function of the fugacity coefficient of this compound in the supercritical fluid phase. [10]
- ii) Making reasonable assumptions simplify this equation. [2]
- iii) Describe the procedure to solve this equation and calculate solubility. [7]

To solve this equation you would need to derive an expression for the fugacity coefficient. Which of the following two equations would you use and why?

$$ln\phi_2 = \int_O^P \left[\frac{\overline{v}_2}{RT} - \frac{l}{P} \right] dP$$

or

$$ln\phi_{2} = \int_{V}^{\infty} \left[\frac{1}{RT} \left(\frac{dP}{dn_{2}}\right)_{T,V,n_{1}} - \frac{1}{V}\right] dV - \ln \frac{PVm}{RT}$$
[2]

Making a reasonable assumption derive a short-cut method to solve the above problem. Use the following fugacity coefficient expression from the Peng-Robinson equation of state to demonstrate this. Describe the simplified procedure to solve the solubility equation.

$$ln\phi_{2} = \frac{b_{2}}{b} \left(\frac{PV_{m}}{RT} - 1\right) - \ln \frac{P(V_{m} - b)}{RT}$$
$$- \frac{a}{2\sqrt{2}bRT} \left\{ \frac{2[a_{12} + y_{2}(a_{22} - a_{12})]}{a} - \frac{b_{2}}{b} \right\} \cdot \ln \frac{V_{m} + (1 + \sqrt{2})b}{V_{m} + (1 - \sqrt{2})b}$$
[4]

PLEASE TURN OVER

PART B 2.

a)	What is the kinetic effect of pressure on chemical reactions? Explain its origin and name the characteristic quantity that determines the kinetic effect.	[5]
	Explain the solvent effect of pressure on chemical reactions and its origin. Based on that, explain the dramatic effect of pressure on chemical reactions in near critical and supercritical media.	[5]
b)	In flame retardant chemistry, describe referring to the combustion cycle the terms solid phase inhibition and vapour phase inhibition.	[6]
	Describe the mechanism of intumescence in flame retardant coatings.	[9]
3. a)	Present a schematic model of polymer dissolution and formulate the differential equations describing the process.	[9]
b)	Using an approximation, solve the system equations and calculate gel thickness.	[13]
c)	What is the maximum value for the gel thickness? Explain your answer.	[3]

PLEASE TURN OVER

٠

r

•

PART C

ŧ

\$

4.		
a)	Name the phases of a generic product development process. Explain and discuss them.	[7]
b)	Expand the first phase of the product development process into the front end process. Name the front end activities and order them in a block diagram. Discuss each activity.	[12]
c)	Name the two extreme cases of product development organisations and discuss their strengths and weaknesses. Name the hybrid models and present all four types in a schematic explanatory diagram.	[6]
5. a)	Name and discuss the six steps of the process of identifying customer needs.	[9]
b)	Name and discuss the four steps of establishing target specifications.	[7]
c)	Name and discuss the four steps of setting the final product specifications.	[9]
6. a)	Explain the meaning of product architecture. Explain and discuss the properties of a modular product architecture vs. an integral architecture. Name and discuss the types of modularity.	[8]
b)	Name and discuss the implications of product architecture.	[8]
c)	Name and discuss the steps for establishing the product architecture.	[9]

END OF PAPER