UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-
M.Sc.

M9: Transport Processes

COURSE CODE	$:$ CENG00M9
DATE	$: \mathbf{3 0 - A P R - 0 3}$
TIME	$: \mathbf{1 0 . 0 0}$
TIME ALLOWED	$: \mathbf{3}$ Hours

Answer FOUR QUESTIONS. Only the first four answers given will be marked. $A L L$ questions carry a total of 20 MARKS each, distributed as shown []

1. Oil occupies the concentric space between a long horizontal shaft of radius R_{I} and an enveloping cylinder of radius R_{2}.
a) If the inner shaft is rotated within the cylinder at angular velocity ω, derive a steady state expression for:
(i) The liquid velocity distribution within the annular space.
b) If the inner shaft is drawn axially, without rotating, through the cylinder at a linear velocity V, derive steady state expressions for:
(i) The liquid velocity distribution within the annular space.
(ii) The shear stress on the inner cylinder.

You may assume that the oil is Newtonian.
Continuity and Navier-Stokes equations:

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(\rho r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

r-component

$$
\begin{aligned}
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r}\right. & \left.\frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right)=-\frac{\partial p}{\partial r} \\
& +\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]+\rho g_{r}
\end{aligned}
$$

θ-component

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}\right)=-\frac{1}{r} \frac{\partial p}{\partial \theta} \\
&+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}\right]+\rho g_{\theta}
\end{aligned}
$$

z-component

$$
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho g_{z}
$$

PLEASE TURN OVER

2. Discuss the concept of penetration distance in relation to the unsteady state transfer of mass, momentum and heat into semi-infinite media.

Derive an expression for the early-time contact temperature between two finite bodies brought together at initially different temperatures given that the transient temperature distribution in a semi-infinite slab is given by:

$$
\frac{T-T_{o}}{T_{s}-T_{o}}=e r f c \eta
$$

where

$$
\eta=y / \sqrt{4 \alpha t}
$$

and

$$
\operatorname{erfc} \eta=\frac{2}{\sqrt{\pi}} \int_{\eta}^{x} e^{-t^{2}} d t
$$

T_{s} is the surface temperature, T_{o} the initial temperature and T the temperature at distance y from the surface, α is the thermal diffusivity and is $=k / C_{p} \rho$.

Thus explain which feels colder to the touch: wood or metal at the same temperature.
3. Discuss the conceptual differences between the film and penetration models of mass transfer respectively. State the appropriate boundary conditions and derive the corresponding transport equations.

Using the film theory, sketch the form of the concentration profiles for a gas dissolving into liquid and undergoing a first order chemical reaction for
(a) no reaction, (b) slow reaction and (c) fast reaction.

Explain the significance of the Hatta number, Ha , defined by:

$$
H a=\sqrt{D_{A} k_{1}} / k_{L}^{o}
$$

where D_{A} is the liquid phase diffusivity of component A, k_{1} is the pseudo first-order reaction rate constant and k_{L}^{o} is the physical mass transfer coefficient.

Traces of CO_{2} in a gas stream are absorbed by a 0.5 M aqueous solution of KOH . If the reaction rate constant k_{1} is $8.0 \times 10^{3} \mathrm{~s}^{-1}$, the mass transfer coefficient is $4 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$ and the diffusivity of KOH in water is $2 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.
(i) To what extent is the rate of absorption enhanced by the use of alkali?
(ii) To which case above (a, b or c) does the system correspond?
(iii) What type of mass transfer device would you recommend for this duty, and why?
4. Derive an expression for the Reynolds analogy between heat and momentum transfer in a pipe.

State briefly how the Reynolds analogy may be modified to produce (i) the Prandtl analogy and (ii) the von Kármán analogy.

Why are the Prandtl and von Kármán analogies likely to be superior to the Reynolds analogy?

A gas flows through a straight pipe at $300 \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and a Reynolds number of 120,000 . At this Reynolds number $c_{f}=0.079 R e^{-0.25}$. Using the Reynolds analogy, estimate the corresponding value of the heat transfer coefficient.
Data: gas property: $c_{P}=1.4 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
5. Discuss briefly Rushton's concept of shear and flow in a stirred tank.

A bench-scale stirred tank is to be scaled up to full-scale whilst retaining geometric similarity. The bench-scale tank is 0.2 m in diameter with a 0.05 m diameter impeller that rotates at 15 Hz and consumes 3.1 W in power. Both tanks are filled to a depth equal to their diameter with a liquid of density $1350 \mathrm{~kg} \mathrm{~m}^{-3}$. The full-scale tank is 1.6 m in diameter. Scale up is to be performed at constant mean energy dissipation rate. How much power is required by the full-scale impeller and what is its rate of rotation?
By what factors would the shear and flow characteristics change in the full-scale tank if the impeller diameter were doubled in diameter at constant power input?

6. Describe briefly the Weissenberg effect.

Starting from the r-component of the equations of motion expressed in terms of stresses:

$$
\begin{aligned}
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r}\right. & \left.\frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right)= \\
& -\frac{\partial p}{\partial r}-\left(\frac{1}{r} \frac{\partial\left(r \tau_{r r}\right)}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}-\frac{\tau_{\theta \theta}}{r}+\frac{\partial \tau_{r z}}{\partial z}\right)+\rho g_{r}
\end{aligned}
$$

show that for a viscoelastic fluid contained between long concentric cylinders the difference in total stresses exerted on the outer and inner cylinder walls, radii r_{o} and r_{l} respectively, is given by:

$$
\begin{equation*}
\left(\tau_{r r}+p\right)_{r_{o}}-\left(\tau_{r r}+p\right)_{r_{i}}=\int_{r_{i}}^{r_{o}} \frac{\rho v_{\theta}^{2}}{r} d r+\int_{r_{i}}^{r_{o}} \frac{\left(\tau_{r r}-\tau_{\theta \theta}\right)}{r} d r \tag{8}
\end{equation*}
$$

A dilute polymer solution in a Newtonian solvent is contained between two concentric cylinders, inner cylinder diameter 60 mm and outer cylinder diameter 65 mm . When the outer cylinder was rotated at a fixed speed a total stress difference of 27 Pa was observed between the outer and inner cylinder walls. When the polymer solution was replaced by the Newtonian solvent a total stress difference of 71 Pa was observed under the same conditions. Assuming that the rate of shear is constant across the gap between the cylinders and that the polymer solution and the Newtonian solvent exhibit similar velocity profiles, what was the first normal stress difference exerted by the viscoelastic fluid?

END OF PAPER

