UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

M.SC.

M9: Transport Processes

COURSE CODE

DATE
: CENG00M9
: 30-APR-02

TIME
: $\mathbf{1 0 . 0 0}$

TIME ALLOWED
: 3 hours

Answer FOUR questions only.

Each question carries a total of 20 marks distributed as shown []
The Equations of Change are appended.

1. A long horizontal pipe of circular cross-section and radius R is filled with a Newtonian liquid of viscosity μ and density ρ. A continuous wire, radius $x R(x<1)$ is drawn along the pipe axis at a steady velocity V.
Using the continuity and Navier-Stokes equations in the appended equations of change, derive an equation describing the velocity profile in the liquid. Neglect any end effects.
If the pipe is 20 m long, $\mu=10^{-1} \mathrm{Pas}, x=2 \times 10^{-1}$ and $V=2 \mathrm{~m} \mathrm{~s}^{-1}$, calculate the force required to draw the wire through the liquid.
2. Describe, with the aid of a sketch, the phenomenon of the boundary layer with reference to the two dimensional flow of a Newtonian fluid along a horizontal, flat plate.

The differential describing equations describing the flow within the boundary layer along a flat plate can be written as:

$$
\begin{gathered}
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0 \\
v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}=\vartheta \frac{\partial^{2} v_{x}}{\partial y^{2}}
\end{gathered}
$$

where v_{x} and v_{y} are the fluid velocities parallel to and perpendicular to the flat plate respectively, and ϑ is the momentum diffusivity of the fluid.
Write down the boundary conditions for this flow situation given that the bulk fluid velocity far from the plate is V.
A numerical solution to the boundary layer equations for fluid flowing over a flat plate is given by:

η	0	0.1	0.2	0.3	1	2.5	5
$v_{x} V$	0	0.0665	0.133	0.195	0.630	0.990	1.00

where η is a dimensionless variable given by:

$$
\eta=y\left(\frac{V}{4 \vartheta x}\right)^{0.5}
$$

where x is the distance along the plate from the leading edge, y is the distance perpendicular to the plate, V is the velocity of the bulk flow far from the plate and ϑ is the momentum diffusivity of the fluid.
Use this numerical solution to find
(i) An expression for the boundary layer thickness, δ, and
(ii) The local surface shear stress, τ_{0},
both as functions of distance x from the leading edge.
3. A soluble gas component S is to be absorbed into a liquid containing soluble component R which it reacts instantaneously and irreversibly according to $S+q R \rightarrow S R_{q}$.
(i) Derive describing equations for the mass flux and critical concentration. [6]
(ii) Sketch how the rate of absorption of gas varies quantitatively with the concentration of R in the liquid within the range $0<[R]<10 \mathrm{kmol} \mathrm{m}^{-3}$.
(iii) Calculate the maximum absorption enhancement factor
(iv) Specify suitable types of contacting device over the range $0<[R]<10 \mathrm{kmol} \mathrm{m}^{-3}$, with reasons.
Data:
Diffusion coefficients of S and R in the liquid phase $\quad=1.0 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Gas phase film mass transfer coefficient $\quad=2.0 \times 10^{-3} \mathrm{kmol} \mathrm{m}^{-2} \mathrm{~s}^{-1} \mathrm{bar}^{-1}$
Liquid phase mass transfer coefficient $\quad=1.0 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$
Partial pressure of S in the bulk gas phase $\quad=0.15 \mathrm{bar}$
Henry's Law coefficient for the solubility of gas in liquid $=1.2 \times 10^{2}$ bar m$^{3} \mathrm{kmol}^{-1}$
Stoichiometric ratio $=2$
4. Show that the volumetric flow rate Q through a pipe of internal radius R for a Bingham plastic, $\dot{\gamma}=\frac{\tau_{y}-\tau}{\mu_{p}}$, are related to the wall shear stress τ_{w} by

$$
\frac{4 Q}{\pi R^{3}}=\frac{\tau_{w}}{\mu_{p}}\left[1-\frac{4}{3}\left(\frac{\tau_{y}}{\tau_{w}}\right)+\frac{1}{3}\left(\frac{\tau_{y}}{\tau_{w}}\right)^{4}\right]
$$

where $\dot{\gamma}$ is the shear rate, τ the shear stress, τ_{y} the fluid yield stress and μ_{p} the plastic viscosity.
A slurry is to be pumped through a 130 m long, straight horizontal, 180 mm diameter pipe. Calculate:
(i) the pressure drop required to just start the slurry flowing;
(ii) the mass flowrate when a pressure difference of 6 bar is applied across the pipe length; and
(iii) the fraction of the pipe cross-sectional area occupied by the "solid" central plug at the flowrate given in (ii).
Data: Slurry properties: density $1250 \mathrm{~kg} \mathrm{~m}^{-3}$; "flow curve" below.

5. It is proposed to scale-up a continuous stirred tank reactor to maintain the same product yield per unit volume per unit time. To do this, it has been recommended that scale-up be at constant residence time distribution and at constant mean residence time.
(i) Derive an appropriate scale-up criterion to achieve this under geometric similarity.
A pilot plant continuous stirred tank reactor (illustrated below) has an internal diameter of 300 mm and is filled to a depth of 500 mm . It is fitted with three Rushton (disk) turbines, each with a diameter one third of that of the tank, mounted one half of a tank diameter apart on a single impeller shaft. This impeller shaft rotates at 600 rpm and is centrally mounted in the vessel, which is fully baffled.

Pilot scale stirred tank reactor
Experiments indicate that a mean residence time of 15 minutes achieves the required product yield.
(ii) Calculate the mass flowrate of reactants into the pilot scale vessel.
(iii) Using the scale-up criterion derived in (i) above, calculate the diameter of a geometrically similar production-scale reactor to handle $2 \mathrm{~kg} \mathrm{~s}^{-1}$ feed.
(iv) What are the power and torque required from a motor drive to the impellers for your production-scale reactor sized in (iii)?
(v) Comment upon any drawbacks of this scale-up criterion.

Data: Reaction mixture density $=1150 \mathrm{~kg} \mathrm{~m}^{-3}$, viscosity $=0.56 \times 10^{-3} \mathrm{~Pa} \mathrm{~s}$. The power number for a single Rushton (disk) turbine is 0.5 .
6. Outline the bases of:
(i) the Prandtl Mixing Length theory of turbulence, and
(ii) the Kolmogorov theory of turbulence.

An ideal gas at 5 bar and $270^{\circ} \mathrm{C}$ flows through a pipe 600 mm internal diameter. If the mass flow rate of gas is $50 \mathrm{~kg} \mathrm{~min}^{-1}$, estimate:-
(iii) the Prandtl scale of eddies on the pipe centre-line;
(iv) the Kolmogorov dissipation scale of turbulence; and
(v) the smallest scale of eddies present.

Data: gas properties: molecular mass $=17$, viscosity $=1.9 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}$. $c_{\mathrm{f}}=0.079 R e^{-0.25} . R=8.314 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

Appendix

Equations of Change

Rectangular co-ordinates (x, y, z) :

Continuity

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}\left(\rho v_{x}\right)+\frac{\partial}{\partial y}\left(\rho v_{y}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

Motion
x-component

$$
\rho\left(\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+v_{z} \frac{\partial v_{x}}{\partial z}\right)=-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial z^{2}}\right]+\rho g_{x}
$$

y-component

$$
\rho\left(\frac{\partial v_{y}}{\partial t}+v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+v_{z} \frac{\partial v_{y}}{\partial z}\right)=-\frac{\partial p}{\partial y}+\mu\left[\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial y^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right]+\rho g_{y}
$$

z-component

$$
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{\partial^{2} v_{z}}{\partial x^{2}}+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho g_{z}
$$

Cylindrical co-ordinates (r, θ, z):

Continuity

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(\rho r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

Motion
r-component

$$
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right)=-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]+\rho g_{r}
$$

θ-component

$$
\rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}\right)=-\frac{1}{r} \frac{\partial p}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}\right]+\rho g_{\theta}
$$

z-component

$$
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho g_{z}
$$

END OF PAPER

