UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sc.

D8: Chemical Reaction Engineering

COURSE CODE : CENGOOD8

DATE

: 16-MAY-06

TIME

: 10.00

TIME ALLOWED : 3 Hours

Answer FOUR questions. Only the first four answers will be marked.

ALL questions carry a total of 25 each, distributed as shown []

Graph paper provided

Where numerical integration is required for any question use Simpson's rule as stated below.

For N+1 points where N is even,

$$\int_{X_0}^{X_N} f(X) dX = \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \dots + 4f_{N-1} + f_N)$$

where
$$h = \frac{X_N - X_O}{N}$$

1

- a) The elementary liquid phase reaction A→ B takes place in two continuous stirred reactors connected in series. The concentration of reactant A in the inlet to the first reactor is 1 mol/dm³, whilst in its outlet is 0.5mol/dm³. If the volume of the second reactor is four times that of the first, find the exit concentration from the second reactor. [15]
- b) If the order of the reactors is reversed, what is the final exit concentration?[10]

2

A reaction with the stoichiometry $A \rightarrow B$ displays the behaviour indicated below.

$C_A (mol/dm^3)$	-r _A (mol/dm ³ min)
1	2
2	5
3	12
4	25
5	40
7	16
8	10
10	6
12	5
20	4

We wish to operate a reactor (or a combination of reactors) in such a way that we get 90% conversion of a feed stream in which the concentration of A is 20mol/dm³. If the flow rate is 100dm³/min find the reactor volume:

CONTINUED

a) b)	for a PFR [8 for a CSTR [7]	
c)	for a combination of one PFR and one CSTR which minimises total reactor volume [10])]
3	The elementary liquid phase reaction system	
	A \rightarrow B (with reaction rate constant $k_1 = 0.001 \text{ s}^{-1}$) B \rightarrow C (with reaction rate constant $k_2 = 0.003 \text{ s}^{-1}$) B \rightarrow D (with reaction rate constant $k_3 = 0.002 \text{ s}^{-1}$)	
	is carried out in a batch reactor in which initially there is pure A.	
a) b) c) d) e)	What is the ratio C_A/C_{Ao} after 1.5 min? Derive an equation for the concentration of B as a function of time. If C_{Ao} =0.2 mol/dm ³ , what is the concentration of B after 2 min?	4] 3] 5] 3]
4 a)	What is Knudsen diffusion? [5	5]
b)	Consider a porous catalyst pellet where a reaction occurs and mass/heat transfer resistances exist (both intraphase and interphase). Sketch the radial concentration and temperature profiles for an endothermic and exothermic reaction and explain why the profiles have these forms.)]
c)	Reactant A, which is present in dilute concentrations, is diffusing at steady state from the bulk fluid through a stagnant film of B of thickness δ to the external surface of a spherical nonporous catalyst pellet with diameter d_p . Since $\delta << d_p$ we can neglect the curvature of the film. Determine the concentration profile (C_A as a function of film co-ordinate) and the molar flut of A (W_{Az}).	
	Additional Information Molecular Diffusivity: $D_{AB} = 10^{-6} \text{ m}^2/\text{s}$ Film thickness: $\delta = 10^{-6} \text{ m}$ Total concentration: $C_{T0} = 100 \text{ mol/m}^3$ Mole fraction of A at the bulk: $y_{A,bulk} = 0.9$ Mole fraction of A at the surface of the pellet: $y_{A,surface} = 0.2$	

PLEASE TURN OVER

- This question concerns the application of plug-flow reactors for biocatalytic reactions.
- (a) Derive an analytical expression (based on a mass balance) to describe the productivity of an enzyme catalysed reaction in a plug-flow reactor. Assume Michaelis-Menten kinetics apply and state any other assumptions used.

 [15]
- (b) Why is this type of reactor preferable for industrial operation rather than a continuous stirred tank reactor? [5]
- (c) For industrial operation why are such reactors frequently used with a recycle?

END OF PAPER