UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

Biochemical Eng E184: Integrated Biochemical Engineering Design

COURSE CODE	:	BENGE184
UNIT VALUE	:	0.50
DATE	:	03-MAY-05
ТІМЕ	:	10.00
TIME ALLOWED	:	3 Hours

4

05-C0112-3-30 © 2005 University College London

TURN OVER

.

Answer TWO QUESTIONS from PART A, and the question in PART B.

Part A

4

1.	What are the financial 'exit routes' available to refund venture capitalists financial is a company in the life sciences in the UK and the U.S. Explain the advantages at the disadvantages of each.	
2.	What are the major factors influencing the healthcare market worldwide? Give reasons and illustrate your answer with examples.	[25]
3.	Give details of development pathway and regulatory hurdles for a biological therapeutic drug, including timescales in the UK.	[25]
Part B		
1		

P

1.

How would you evolve a suitable specification for a repeat high dose protein	
derived from <i>E. coli</i> ?	[15]
How would the process sequence used to deliver this product differ to one for t	he
same product but now derived from a mammalian cell source?	[15]

How might you contemplate using scale-down and modelling tools to assist in arriving at your final design solution? [20]

(You might care to take a couple of unit operations as examples to demonstrate your understanding of the concepts here.)

END OF PAPER