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Answer three questions, at least one from part A and one from part B. Each question is worth 33 

marks. The total time allowed is two and a half hours. 

 

PART A 

Question 1 

(a) Describe Schafer’s dichromatic model for the reflectance of light by an object and show 

how it leads to an equation for the colour ( )C x x x x( ) ( ), ( ), ( )= R G B  at pixel x in an image of the 

form 

ibxC ssSbS cmImI +=)(      . (1) 

Explain what each of the terms on the right hand side of equation (1) above stands for and 

describe how they depend on the scene geometry, spectral content of the illuminant, and on the 

reflectance properties of the object. 

[6 marks] 

(b) Describe how, according to Shafer’s dichromatic model, you would expect the observed 

pixel colours to be distributed in the RGB colour cube for images of: 

(1) a piece of clothing, such as a man’s shirt, 

(2) a mirror, 

(3) a coloured, glazed ceramic tile. 

Explain what deviations from the distributions in (1)- (3) above you would expect in practice. 

[6 marks] 

(c) Define the chromaticity rgb and explain under what conditions Schafer’s model predicts 

that the chromaticity will be invariant under changes in the spectral content of the illuminant. 

 [4 marks] 

        [Question 1 cont. over page] 

          [TURN OVER] 
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[Question 1 cont.] 

(d) A camera whose colour channels satisfy the integrated white condition is used to derive 

opponent colour values at each pixel from the difference of the RGB values. 

(i) Explain what is meant by the integrated white condition and describe why it is important.   

(ii) Show that, according to Shafer’s model, if an object is illuminated by white or grey light, 

the opponent colours obtained from this camera depend on only one of the terms on the right 

hand side of equation (1) in (a) above. 

(iii) Show that ratios of the above opponent colour values at each pixel should be unchanged 

under variation of the object’s orientation and be independent of the brightness of the illuminant. 

[8 marks] 

(e) The camera described in (d) above is used to take an image of two differently coloured, 

flat, glazed ceramic tiles illuminated under white light. 

(i) Explain how you would use this image to characterise the colour of each tile. What 

condition must be satisfied if you are to obtain a good characterisation? 

(ii) Describe under what circumstances it would be easy to build a machine vision system, 

utilising the above camera and white light source, to distinguish examples of these two different 

types of tile on a conveyor belt. 

(iii) Explain why the system should, without change, also be able to distinguish unglazed  

examples of these two types of tile. 

(iv) Describe how the system could further be used to distinguish a glazed tile of a particular 

type from an unglazed tile of the same type. What condition must be satisfied in this case? 

[9 marks] 

          [Total 33 marks] 

          [CONTINUED] 



 4

Question 2 

(a) A machine vision researcher has developed an image segmentation algorithm that is based 

on a model of the image pixel colour components ),,( BGR  being independently distributed as 

)(RpR , )(GpG  and )(BpB  with means R , G , and B respectively. 

(i) Show that, according to this model, the distribution of pixel intensities may be obtained 

from )(RpR , )(GpG  and )(BpB by two successive convolutions. 

(ii) Explain why, if each of the distributions )(RpR , )(GpG  and )(BpB  is assumed to be 

normal with means R , G , B and variances 2
Rσ , 2

Gσ and 2
Bσ , respectively, that the distribution of 

intensity BGRI ++=  will also be normal. 

(iii) Evaluate the mean intensity, I , and the variance, 2σ , of the intensity distribution in (ii) 

above. 

(iv) Comment on the validity, in principle, of using such Gaussian model distributions. 

[8 marks] 

(b)  

(i) Describe how you would extend the above Gaussian model so that it can better describe 

the distributions of pixel colours likely to be encountered in practice from a region of an image 

corresponding to a uniformly illuminated, uniformly matt painted wall. 

(ii) Describe the method you would use to estimate the parameters of the distribution of pixel 

colours in this case. 

(iii) Illustrate how the method you have described in (b)(ii) above works by using it to estimate 

the mean, I , and the variance, 2σ , of the intensity distribution. Comment on the formulae you 

obtain. 

[9 marks] 

        [Question 2 cont. over page] 

[TURN OVER] 
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[Question 2 cont.] 

(c) Discuss the limitations of the model you described in (b)(i) above when: 

(i) The lighting is uniform, but of variable brightness. 

(ii) Parts of the wall are more brightly illuminated than others because of shading effects. 

(iii) The paint on the wall contains several different types of small pigment particles. 

(iv) The wall has been covered with a regularly patterned, matt paper. 

 [8 marks] 

(d) Discuss how the model may be further generalised in order to describe images of rough 

surfaces and describe, how you would characterise the roughness and how you would estimate it 

from image data. 

[8 marks] 

          [Total 33 marks] 

Question 3 

(a) A Markov random field ),( nmF used to model image texture is often described by the 

probability density function  

 
Z
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(i) Explain what each of the terms in equation (2) stands for and describe what conditions 

)(FP and ),( nmU  must satisfy in order for ),( nmF to be a Markov random field.   

(ii) Describe how the ),( nmU may be represented in terms of interactions between pairs of 

pixels and over larger pixel cliques. 

           [6 marks] 

(b)  

(i) Illustrate your answer to (a)(ii) above by means of models designed to encourage smooth 

variations of the field F , (1) with minimum gradient variation, and (2) with minimum curvature 

variation. 

        [Question 3(b) cont. over page] 

[CONTINUED] 
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[Question 3 (b) cont.] 

(ii) Describe how interactions in the ),( nmU such as those in (1) and (2) in (b)(i) above can 

lead to long range correlation in the field F . 

(iii) Explain why these interactions make it difficult to calculate a realisation of the field F  

consistent with the distribution in equation (2) above. 

           [7 marks] 

(c) 

(i) Describe one  method that may be used to calculate a field F  consistent with (2). 

(ii) Describe what in principle must be done to ensure that the field F  obtained by the method 

you have described in (c)(i) above does, for example, have minimum gradient variation. Comment 

on the significance of this requirement in practice. 

(iii) Explain what you would do in a practical implementation of this technique to overcome 

the difficulties arising from the requirements in (c)(ii) above. 

           [10 marks] 

(d) 

(i) Explain what is meant by “hidden variables” and describe why you might wish to include 

such terms in the Markov random field appearing in equation (2) in part (a) above. 

(ii) Explain how the hidden variables that you would introduce in (d)(i) affect the interactions 

between pixels in the Markov random field model you described in (b)(i)(1) above.  

(iii) Describe how the hidden variables you would introduce in c(i) affect each other. Indicate 

the strength of these interactions relative to each other and to the original interactions in model 

(b)(i)(1) above and explain why these interactions should be so. 

(iv) Explain why it is difficult to estimate the strengths of these interactions in practice.  

           [10 marks] 

          [Total 33 marks] 

[TURN OVER] 
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PART B 

 

Question 4 

(a) Derive the Fourier transform of the image signal 

( )[ ] ( )kxykxkmcyxI coscos1),( 21 δδ +++=   , 

 where ( ) ( )2
2

2
1 kkk δδ +> , and 1>c  and 1<m  are constants. 

                     [5 marks] 

(b) The Canny edge detector is applied to the image signal given in question 4(a). Explain, 

using illustrations where appropriate, how the edges detected by the model will vary as a function 

of the magnitude of the parameter m  and whether these edges reflect visual perception. 

[8 marks] 

(c) 

(i) Explain how a compressive non-linear transfer function like a Naka-Rushton receptor 

equation, may introduce distortion products into the processed image signal.  

(ii) Let the visual image signal be composed of two sinusoidal gratings of similar spatial 

frequency and contrast. The image signal is processed by a compressive non-linearity, which may 

be approximated by a power series expansion. By use of these assumptions, provide an estimate 

of the magnitude and frequency of the distortion product with the lowest spatial frequency that is 

introduced into the visual signal. 

[8 marks] 

(d) What evidence, if any, suggests that the visual system has specialised processes whose 

purpose it is to detect contrast changes that might be present in the visual signal? 

    [12 marks] 

          [Total 33 marks] 

          [CONTINUED] 
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Question 5 

(a) Describe the respective assumptions used by ordinary least-squares (OLS) and by total 

least-squares (TLS) minimization procedures. 

[5 marks] 

(b) Explain the perceptual consequences of motion adaptation on motion perception. 

[8 marks] 

(c) Is motion adaptation a consequence of neural fatigue? Your answer should contrast and 

compare those predictions made by “fatigue models” with those made by “optimisation” models 

of visual adaptation. 

[8 marks]   

(d) Provide an account for effects of motion adaptation on motion perception by contrasting 

and comparing the predictions made by OLS and TLS models of motion perception. 

[12 marks] 

          [Total 33 marks] 

Question 6 

(a) Define the binocular correspondence problem, explain why it can occur and show how the 

problem can be tackled by a coarse to fine strategy. You should use one computational model of 

binocular depth perception to help illustrate your answer. 

[8 marks]  

(b) What constraints can be applied to explain one’s perception of monocular transparency? In 

what respect are these constraints incomplete? 

[5 marks] 

(c) What is the two-channel model for binocular depth perception? Your answer should 

include empirical evidence to support the two-channel model over the single channel model.  

[12 marks] 

(d) Explain how monocular constraints on perceptual transparency may be applied to explain 

the asymmetric binocular depth relations found for contrast envelopes. 

[8 marks] 

          [Total 33 marks] 

[END OF PAPER] 
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