University College London
University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
M.Res

COURSE CODE

TITLE OF EXAMINATION : | Mathematical Methods, Algorithms |
| :--- |
| and Implementations |

DATE

TIME
$: \quad 09.30$

TIME ALLOWED

1) a) Assume that a function $h(t)$ is band-limited with maximum frequency ω_{c}. If it is sampled over a period T, what is the minimum number of samples $\mathrm{N}_{\text {min }}$ to ensure that no aliasing occurs ?
b) Assuming that a sampled list $\left\{h_{j}\right\} j=1 \rightarrow N_{\text {min }}$ has been obtained, describe the steps required to carry out Fourier interpolation to a list of length M that corresponds to taking M samples of $h(t)$ in the sample period T.
[10 marks]
c) Prove that the resultant list in part b) corresponds to the Sinc-interpolated values of the original list.
[10 marks]
2) a) What is meant by a generalised function?
b) Give a definition of a delta-function, $\delta(\mathrm{t})$, in terms of the limit of a set of ordinary functions, and show that it satisfies the requirements to be a generalised function. State the Fourier Transform of $\delta(\mathrm{t})$.
[5 Marks]
c) From the definition in part b), prove the following properties of a deltafunction:
```
i) sampling :
    \(\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)\)
ii) shifting :
\(\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)\)
iii) scaling :
    \(\delta(a t)=\frac{\delta(t)}{|a|}\)
```

[6 Marks]
d) Show that if $F(\omega)$ is the Fourier Transform of $f(t)$ then (i $\omega \mathrm{F}$) is the Fourier Transform of $\mathrm{f}^{\prime}(\mathrm{t})$
e) Let $\varepsilon(t)$ be the Inverse Fourier Transform of (i ω). Use the answers to b), c) and d) to deduce the result of the convolution $\varepsilon(\mathrm{t}) * \mathrm{f}(\mathrm{t})$. Comment on the relationship between this result and the design of convolution filter for edgedetection in image processing
3)
a) Consider the problem

$$
\begin{array}{r}
u "(x)=K u(x) \\
\text { with } u(0)=u(L)=0
\end{array}
$$

show that $u_{n}(x)=\operatorname{Sin}(n \pi x / L)$ are solutions to this problem for any positive integer n .
[4 Marks]
b) How can the answer to part a) be used to find the solution to the problem:

$$
u^{\prime \prime}(\mathrm{x})-\alpha \mathrm{u}(\mathrm{x})=\mathrm{f}(\mathrm{x})
$$

where $f(x)$ is given and $u(0)=u(L)=0$.
What restrictions on α are necessary for the solution to exist?
[6 Marks]
c) Show that the solution to part b) can be considered as the convolution of a function $G\left(x, x^{\prime}\right)$ with $f(x)$, and find the function $G\left(x, x^{\prime}\right)$ as a sum of trigonometric terms.
[11 Marks]
d) Show that $\mathrm{G}\left(\mathrm{x}, \mathrm{x}_{0}\right)$ is the solution to the problem in part b) for the case where $f(x)$ is a delta-function at the point $x=x_{0}$.

The following Partial Differential Equation can be used to describe viscid fluid flow in two dimension :

$$
\begin{equation*}
\alpha \nabla(\nabla \cdot \boldsymbol{f}(x, y))+\beta \nabla^{2} \boldsymbol{f}(x, y)=\frac{\partial \boldsymbol{f}(x, y)}{\partial t} \tag{1}
\end{equation*}
$$

where α, β are constants and $\boldsymbol{f}=\binom{u}{v}$ is the velocity vector at every point in a 2 D plane.
a) Consider a finite square solution domain of size d, discretised into a grid with N points on each side. Derive the spatial finite differencing operators for each of the terms on the left hand side of Equation (3), and therefore formulate the problem as a finite matrix equation :

$$
\begin{equation*}
\mathrm{A} f=\frac{\partial f}{\partial t} \tag{2}
\end{equation*}
$$

where $f=\left(\begin{array}{c}\cdot \\ \cdot \\ u_{i, j} \\ v_{i, j} \\ \cdot \\ .\end{array}\right)$
[17 marks]
b) Show how the time-derivative can be discretised to form either an Implicit or Explicit scheme. Consider the relative merits of these approaches.
[8 marks]

