GMV - VIVE

Electronic calculators are permitted.
Note : where an algorithm is asked for, you may write in any suitable pseudo-code. Correct syntax for any computer language is not expected.

Answer three questions, at least one from each of Part A and Part B

PART A

1. a) Explain the use of Homogeneous Coordinates in Computer Graphics for representing transformations in three-dimensional space. Include in your answer a definition of identity transformations, inverse transformations and concatenation of transforms. [8 marks]
b) What is the relationship between a transformation of an object in a fixed coordinate system, and the transformation of a coordinate system around a fixed object ?
[4 marks]
c) The equation of an infinite plane is $a x+b y+c z+d=0$. What is the surface normal of this plane? What is the significance of its direction ?
[3 marks]
d) Derive the transformation that reflects in this plane by taking the following steps :
i) Find the position of a point on this plane by considering the intersection of one of the coordinate axes with the plane. Show how to ensure that such an intersection does exist.
[3 marks]
ii) Give the transformation that translates this point to the origin.
[2 marks]
iii) Show how a combination of rotations around two of the principle axes can be used to align the surface normal with the z -axis.
[6 marks]
iv) Give the transformation for a reflection in the xy plane.
[2 marks]
v) Combine the answers to ii)-iv) above to derive the transformation that reflects in the required plane. (You may leave your answer as a sequence of transformations without explicitly concatenating them).
2. a) How does half-toning help to convey the impression of different intensity levels on a bi-level output device ?
[5 marks]
b) How many intensity levels may be simulated by using a 4×4 pattern of binary pixels to represent one grey pixel ?
[2 marks]
c) An image has been calculated for display on an eight-bit display device. What is the maximum range of values in the pixels representing this image ?
[2 marks]
d) The image is to be displayed on a bi-level device using the dither matrix shown :

$\mathrm{D}^{(4)}=\quad$| 1 | 9 | 3 | 11 |
| :--- | :--- | :--- | :--- |
| 13 | 5 | 15 | 7 |
| 4 | 12 | 2 | 10 |
| 16 | 8 | 14 | 6 |

Show how to divide up the original greyscale range into the range that may be simulated using this dither matrix. Give the half-tone patterns that represent original greyscale values i) 15 , ii) 74 , iii) 150 , iv) 239 .
[8 marks]
e) The image was originally calculated at 256×256 resolution. How would the dither matrix be used to generate the image on the bi-level device at a resolution of i) 1024 x 1024 , ii) 256×256 ?

Briefly explain how error diffusion may be used as an alternative to dithering. Give examples where each method might perform badly.

The 3D viewing transformation may be considered as an Object-to-Image Space transformation \mathbf{Q}, followed by a projection transformation, \mathbf{P}. Explain the meaning of the terms Object Space and Image Space in this process.
b) $\quad \mathbf{Q}$ can be derived by considering a camera model specified by only three vectors : a Camera position vector, a View Direction, and a View Up direction. Explain the meaning of these terms, and indicate how \mathbf{Q} is derived using them. (Note : you are not required to derive explicit forms for the transformations)
[12 marks]
c) Explain the difference between parallel and perspective projection transformations, \mathbf{P}. What extra piece of information is required for the second of these two processes? [6 marks]
d) What subsequent transformations must be applied to transform the object scene into a viewport area on a 2D output device ? Explain the advantages of using a 3D normalised viewing volume.

