
B224 1998 Marking Scheme 3

TURN OVER

3.
a.

Explain what is meant by the dangling-else ambiguity, and describe the solutions
which can be employed to overcome it.

[10 marks]

b.
Consider the following grammars, which have non-terminals {E, C, F} and terminals
{id , or , and } with start symbol E. Each grammar generates the same language,
which may be thought of as that of Boolean expressions with E as expression, C as
conjunct, and F as factor.

i. Write down parse trees for the expression a or b or c for each of these
grammars.

ii. Explain in what way these grammars would be unsuitable for implementing
Boolean expressions with C/C++ style of semantics by a top-down parser.

iii. Show how grammar L can be transformed in a systematic way into a new
grammar which avoids these problems.

iv. Extend the new grammar so that it can handle fully parenthesised expressions.
[15 marks]

4.
a.

The following two augmented grammars are expressed in yacc:

i) list : list INT {print($2);}

 | INT

ii) list : INT list {print($1);}

 |

From each derive a parse tree for the sentence 1 2 3 (which when tokenised
becomes INT INT INT). By traversing that tree show the results of executing the
print actions.

[7 marks]

b.
Consider the following definition

An atom is either a or b

A list is a left parenthesis, followed by zero or more atoms or lists,
followed by a right parenthesis.

An example of a list is (() ((a) (a b)))

i. Define a grammar for list in yacc.

ii. Carefully construct a parse tree using your grammar for the example list given.
[18 marks]

Grammar A Grammar L Grammar R

E → E or E
E → E and E
E → id

E → E or C
E → C
C → C and F
C → F
F → id

E → C or E
E → C
C → F and C
C → F
F → id

CONTINUED

2.
a.

Explain the terms

shift-reduce conflict
reduce-reduce conflict

as met in yacc, and also explain what if anything should be done about removing the
cause of any such conflicts. [6 marks]

b.
The following S-R table was derived from output produced by yacc when given the
input:

s : s ’,’ s

s : ’x’

i. Explain how the table entries s1 and r2 are to be interpreted. Also explain how a
blank entry is to be interpreted.

ii. Show the moves which the parser would make when parsing the sentence
 x1 , x2 , x3

[Hint: remember to initialise the stack with $ 0, corresponding to state 0.]

iii. Construct the corresponding parse tree, labelling each mode with the number of
the move from the parse.

[10 marks]

During the processing of the grammar, yacc reported a conflict.

iv. Explain the nature of this conflict.

v. Show how the grammar could be modified to remove the conflict, without affecting
the structure of the parse tree.

vi. Justify your modification, possibly by comparing its effects with that of a similar
modification which you could have made.

[9 marks]

input Action GOTO

state x , $end s

0 s1 2

1 r2 r2 r2

2 s3 accept

3 s1 4

4 s3 r1

B224 Systems Software 1 1998

TURN OVER1

Computer Science B224 Systems Software

The use of electronic calculators is NOT permitted.

Answer Question 1, which is worth 50 marks, and two others.

1.
a.

Consider the C/C++ statement

do
sum = sum + 100;

while (sum <= 1000);

i. By reference to the above example, explain the terms
lexeme, keyword, token, token type, and token value.

ii. Show the kind of code which a simple compiler might generate for a stack
machine from the statement. [6 marks]

b.
Explain the terms:
 recursive-descent compiler, top-down parsing, and bottom-up parsing.

[6 marks]

c.
i. Draw a syntax diagram for the (generic) C/C++ do-while statement. You may

assume that syntax diagrams for statement and expression (including truth-valued
expressions) exist.

ii. Suppose that the existing syntax diagrams for expression do not cover the
boolean operators || (or) and && (and). Show how, using the diagrams defining
expression, you would incorporate the boolean operators with their C/C++
priorities into expressions. State any assumptions you make.

iii. Annotate your syntax diagrams so as to generate code for a simple stack-based
machine.

 Sketch an implementation of your syntax diagrams as procedures (functions) in a
recursive-descent compiler. Briefly describe the purpose of any other procedures
or variables to which your implementation refers. In the case of variables, for
each one you should make it quite clear whether it is local or global, and explain
why. You may refer to newlabel(), a function which returns a unique label each
time it is called.

Your implementation should work with nested constructs, and you should indicate
how your design allows this. [19 marks]

d.
i. Explain the purpose and use of pseudovariables in yacc.

ii. Show how the do-while statement can be implemented using yacc, assuming that
yacc code to compile statement and expression exists.

iii. Explain how priorities and associativity can be given to operators in yacc, using as
an example the boolean operators || (or) and && (and). [10 marks]

e.
Explain the purpose and structure of a makefile, illustrating your answer with short
examples. [5 marks]

f.
Comment on the ambiguity or otherwise of the C/C++ conditional expression, which
is of the form expression ? expression : expression. [4 marks]

