Exam Questions for B21b, section B

Robin Hirsch

January 28, 1998
2.
3.

SECTION B

4. Recall that the fibonnacci sequence $1,1,2,3,5,8,13, \ldots$ is defined by $f i b(1)=1, f i b(2)=1$ and for $n>2, f i b(n)=f i b(n-1)+f i b(n-2)$.
a. Consider this program:-
```
f(1):= 1
f(2):= 1
f(n)
{
        s:= 1
        for (i:= 1 to n-2) s:=s+f(i)
        return(s)
}
```

What function does the program f define?
[7 marks]
b. By defining a suitable variant for f prove that this program terminates.
[9 marks]
c. Modify the program f above to obtain a program g that computes the more general fibonnacci sequence $f i b o$ defined by $f i b o(1)=a, f i b o(2)=b(a$ and b are arbitrary numbers) and for $n>2, f i b o(n)=f i b o(n-1)+f i b o(n-2)$.
d. Prove, by induction or otherwise, for all $n \geq 1$ that $g(n)=$ fibo (n).

$$
\text { [Total = } 33 \text { marks] }
$$

5. a. Write pre- and post-conditions for a program that takes a list of non-negative integers and returns the list sorted in ascending order.
[4 marks]

Consider the following program, written in pseudo-code. Let L be a list of non-negative integers $L=[L(0), L(1), \ldots, L(m-1)]$, for some $m \geq 0$ and some non-negative integers $L(0), \ldots, L(m-1)$.

Slow_sort(L)
$\{$ while $(\operatorname{Sorted}(L)=$ false $)$
$\{$ pick $i<j<m$ with $L(i)>L(j)$
$\operatorname{Swap}(L, i, j)$
\}
\}
"Sorted" is supposed to be a boolean function that returns 'true' if its argument is a list sorted in ascending order and 'false' otherwise. " $\operatorname{Swap}(L, i, j)$ " is supposed to be a function that swaps $L(i)$ and $L(j)$ in the list L and leaves all other elements alone.
b. Write clear pre and post-conditions for "Sorted" and "Swap".
[4 marks]
c. Write an implementation of the functions "Sorted" and "Swap" in pseudo-code. (But you do not have to prove that they are correct).
[5 marks]
d. Assuming that "Sorted" and "Swap" are implemented correctly, prove that "Slow_sort" is weakly correct (i.e. if it terminates then it will meet its specifications).
e. Prove that the function "Slow_sort" (above) terminates. You may assume that "Sorted" and "Swap" terminate. You may find it helpful to consider the function $V(L)=$ $L(0)+N \times L(1)+\ldots+N^{i} \times L(i)+\ldots+N^{m-1} L(m-1)$, where $|L|=k$ and N is some upper bound for the elements of the list, i.e. $0 \leq L(i)<N$ for $i=0,1, \ldots, m-1$.

$$
\text { [Total = } 33 \text { marks] }
$$

6. Let S be a procedure and let $w p_{S}$ denote the 'weakest precondition predicate transformer of S^{\prime}.
a. Give a precise definition of $w p_{S}$.
[6 marks]
b. Let P and Q be any postconditions. Find an equivalent formulation for $w p_{S}(P \wedge Q)$ in terms of $w p_{S}(P)$ and $w p_{S}(Q)$ only.
c. Let S and T be any procedures and let Q be any postcondition. Let $S ; T$ denote the procedure that consists of doing S first and then doing T. Find an equivalent formulation for $w p_{S ; T}$ using the predicate transformers $w p_{S}$ and $w p_{T}$ only.
d. Let i, j, k be integer valued variables and let S be the procedure:-
$k:=i$
$j:=k+1$
$i:=3-j$
Calculate
7. $w p_{S}(i<5)$
8. $w p_{S}(0<i<3)$
9. $w p_{S}(j=1)$
10. $w p_{S}(i=k)$
11. $w p_{S}(i>j)$
