
Answer THREE questions, at least ONE from EACH of Sections A and B.

SECTION Aiiiiiiiiiii

1.

a) Give a mathematical definition of the order notationiiiiiiiiiiii

f(n) ∈ O(g(n))

and explain how this concept relates to the algorithmic idea of
worst case analysis.iiiiiiiiiiiiiiii

[6 marks]

b) Are the following statements true or false?

(i) 2n+1 ∈ O(2n)

(ii) 22n ∈ O(2n)

(iii) log2(2n) ∈ O(log2(n))

(iv) loga(n) ∈ O(logb(n)), where a and b are positive integers

In each case give a careful argument based on the mathematical definition of O-
notation.

[16 marks]

c) Two algorithms A and B solve the same algorithmic problem, A taking n2 seconds and
B taking n days.

(i) Which algorithm is asymptoticallyiiiiiiiiiiii preferable?

[3 marks]

(ii) Which algorithm is preferable if n only takes values up to 10,000?

[4 marks]

(iii) How large does n need to be before B takes half the time taken by A?

[4 marks]

TURN OVER

- 2 -

2.

a)

(i) Briefly describe how best caseiiiiiiii analysis differs from worst case.iiiiiiiii Distinguish
clearly between the properties of a problem and those of a particular algorithmic
solution. If possible, provide an example of best case analysis to illustrate your
argument.

[9 marks]

(ii) Best case for squaring a matrix.
A = A[1..n, 1..n] is an nxn matrix with integer elements aij (i,j = 1..n). Suppose
that the multiplication of two matrix elements can be regarded as an elementary
operation. Write down and justify an expression which gives a lower bound on
the number of such operations which must be performed by any algorithm which
squares the matrix A (A → B = AxA).

[4 marks]

b) Use a simple graphical argument to show that the discrete sum

i=1
Σ
n

f(i)

is bounded above by the integral

1
∫

n+1
f(t) dt

provided that f(t) is a non-decreasing function.

[6 marks]

c) Consider the following program fragments. In each case work out f(n), the exact
number of unit-time operations performed, as a function of the input size n, then sim-
plify your final answer using O-notation.

(i) for (i = 1; i ≤ n; i++)

for (j = 1; j ≤ n−i; j++)

// Do an operation requiring unit time

[6 marks]

(ii) for (i = 1; i ≤ n; i++)

for (j = 1; j ≤ n; j++)

for (k = 1; k ≤ i*j; k++)

// Do an operation requiring unit time

[8 marks]

CONTINUED

- 3 -

3. Throughout all parts of this question you may assume the variable n is a power of 2 where
appropriate

a) Solve the following recurrence relations, simplifying your final answers using
O-notation.

(i) f(0) = 0

f(n) = f(n−1) + 2, n > 0

[4 marks]

(ii) f(0) = 2

f(n) = 5f(n−1) − 4, n > 0

[4 marks]

(iii) f(0) = 2

f(1) = 5

f(n) = 5f(n−1) − 4f(n−2), n > 1

[5 marks]

(iv) f(0) = 1

f(1) = 4

f(n) = 4f(n−1) − 4f(n−2), n > 1

[5 marks]

(v) f(1) = 3

f(2) = 9

f(n) = 5f(2
nhh) −4f(4

nhh), n > 2

[6 marks]

[Question 3. cont. over page]

TURN OVER

- 4 -

[Question 3. cont.]

b) The Towers of Hanoi.
The problem involves transferring N rings of graduated sizes from a starting peg (peg
1) to a final peg (peg 3), using an auxiliary peg 2 to hold the rings in transit, moving
one ring at a time and never allowing a larger ring to rest on top of a smaller one.

The problem can be solved by calling the procedure Hanoi(N, 1, 3), where Hanoi(n, i,
j) moves the n smallest rings from peg i to peg j, and is defined recursively by

if (n > 0)

{
Hanoi(n-1, i, 6-i-j);
// Move a ring from i to j
Hanoi(n-1, 6-i-j, j);
}

(i) Write down a recursive formula for h(n), the number of times a ring is moved by
Hanoi(n, i, j), where 0 ≤ n ≤ N.

[4 marks]

(ii) Solve this recurrence to show that the number of moves required to solve the N-
ring Towers of Hanoi problem is 2N − 1.

[5 marks]

END OF SECTION A

CONTINUED

