Answer THREE questions, at least ONE from EACH of Sections A and B.

SECTION A

1.

a) Give a mathematical definition of the order notation

$$
\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{~g}(\mathrm{n}))
$$

and explain how this concept relates to the algorithmic idea of worst case analysis.
b) Are the following statements true or false?
(i) $2^{\mathrm{n}+1} \in \mathrm{O}\left(2^{\mathrm{n}}\right)$
(ii) $2^{2 \mathrm{n}} \in \mathrm{O}\left(2^{\mathrm{n}}\right)$
(iii) $\log _{2}(2 \mathrm{n}) \in \mathrm{O}\left(\log _{2}(\mathrm{n})\right)$
(iv) $\log _{\mathrm{a}}(\mathrm{n}) \in \mathrm{O}\left(\log _{\mathrm{b}}(\mathrm{n})\right)$, where a and b are positive integers

In each case give a careful argument based on the mathematical definition of Onotation.
c) Two algorithms A and B solve the same algorithmic problem, A taking n^{2} seconds and B taking n days.
(i) Which algorithm is asymptotically preferable?
(ii) Which algorithm is preferable if n only takes values up to 10,000 ?
[4 marks]
(iii) How large does n need to be before B takes half the time taken by A ?
[4 marks]

TURN OVER
2.
a)
(i) Briefly describe how best case analysis differs from worst case. Distinguish clearly between the properties of a problem and those of a particular algorithmic solution. If possible, provide an example of best case analysis to illustrate your argument.
(ii) Best case for squaring a matrix.
$A=A[1 . . n, 1 . . n]$ is an nxn matrix with integer elements $\mathrm{a}_{\mathrm{ij}}(\mathrm{i}, \mathrm{j}=1 . . \mathrm{n})$. Suppose that the multiplication of two matrix elements can be regarded as an elementary operation. Write down and justify an expression which gives a lower bound on the number of such operations which must be performed by any algorithm which squares the matrix $\mathrm{A}(\mathrm{A} \rightarrow \mathrm{B}=\mathrm{AxA})$.
b) Use a simple graphical argument to show that the discrete sum

$$
\sum_{i=1}^{n} f(i)
$$

is bounded above by the integral

$$
\int_{1}^{n+1} f(t) d t
$$

provided that $\mathrm{f}(\mathrm{t})$ is a non-decreasing function.
[6 marks]
c) Consider the following program fragments. In each case work out $\mathrm{f}(\mathrm{n})$, the exact number of unit-time operations performed, as a function of the input size n, then simplify your final answer using O-notation.
(i) \quad for $(\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}++)$
for ($\mathrm{j}=1 ; \mathrm{j} \leq \mathrm{n}-\mathrm{i} ; \mathrm{j}++$)
// Do an operation requiring unit time
(ii) for ($\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n}$; $\mathrm{i}++$)

$$
\begin{aligned}
& \text { for }(\mathrm{j}=1 ; \mathrm{j} \leq \mathrm{n} ; \mathrm{j}++) \\
& \qquad \begin{array}{l}
\text { for }\left(\mathrm{k}=1 ; \mathrm{k} \leq \mathrm{i}^{*} \mathrm{j} ; \mathrm{k}++\right) \\
\quad / / \text { Do an operation requiring unit time }
\end{array}
\end{aligned}
$$

3. Throughout all parts of this question you may assume the variable n is a power of 2 where appropriate
a) Solve the following recurrence relations, simplifying your final answers using O-notation.
(i) $\mathrm{f}(0)=0$
$\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+2, \quad \mathrm{n}>0$
[4 marks]
(ii) $\mathrm{f}(0)=2$
$\mathrm{f}(\mathrm{n})=5 \mathrm{f}(\mathrm{n}-1)-4, \quad \mathrm{n}>0$
[4 marks]
(iii) $f(0)=2$
$f(1)=5$
$f(n)=5 f(n-1)-4 f(n-2), \quad n>1$
[5 marks]
(iv) $\mathrm{f}(0)=1$
$f(1)=4$
$\mathrm{f}(\mathrm{n})=4 \mathrm{f}(\mathrm{n}-1)-4 \mathrm{f}(\mathrm{n}-2), \quad \mathrm{n}>1$
[5 marks]
(v) $f(1)=3$
$\mathrm{f}(2)=9$
$f(n)=5 f\left(\frac{n}{2}\right)-4 f\left(\frac{n}{4}\right), \quad n>2$
[6 marks]
[Question 3. cont. over page]
[Question 3. cont.]
b) The Towers of Hanoi.

The problem involves transferring N rings of graduated sizes from a starting peg (peg 1) to a final peg (peg 3), using an auxiliary peg 2 to hold the rings in transit, moving one ring at a time and never allowing a larger ring to rest on top of a smaller one.

The problem can be solved by calling the procedure $\operatorname{Hanoi}(\mathrm{N}, 1,3)$, where Hanoi(n, i, j) moves the n smallest rings from peg i to peg j, and is defined recursively by
if $(\mathrm{n}>0)$
\{
Hanoi(n-1, i, 6-i-j);
// Move a ring from \mathbf{i} to \mathbf{j}
Hanoi(n-1, 6-i-j, j);
\}
(i) Write down a recursive formula for $\mathrm{h}(\mathrm{n})$, the number of times a ring is moved by Hanoi($\mathrm{n}, \mathrm{i}, \mathrm{j}$), where $0 \leq \mathrm{n} \leq \mathrm{N}$.
(ii) Solve this recurrence to show that the number of moves required to solve the N ring Towers of Hanoi problem is $2^{\mathrm{N}}-1$.

END OF SECTION A

