Answer QUESTION ONE and TWO other questions.

1.

a) Briefly explain the most important points of eight of the following terms in the context of computer architecture
a. Instruction execution cycle
b. Exception
c. Register
d. Pipeline
e. Subroutine linkage
f. Bus
g. Memory-mapped input/output (I/O)
h. Interrupt
i. Direct memory access (DMA)
[3 marks each; 24 in total]
b) Identify the main factors which affect the structure and size (number of bits) of instructions in digital computers.
2.
a) Briefly explain what you understand by the terms Complex Instruction Set Architecture (CISC) and Reduced Instruction Set Architecture (RISC), indicating their advantages and drawbacks.
[8 marks]
b) You are asked to advise on buying a fast computer for a friend. They are considering either a 166 MHz Pentium Pro (CISC) or a 160 MHz Apple machine (RISC). What are the main factors that affect the performance of computers? What advice would you give to your friend and why?
c) What are temporal locality and spatial locality? Explain how these concepts are used to improve the performance of computers.
[13 marks]

TURN OVER
3.
a) Why is memory management needed in modern computer systems?
b) Explain how paging works, using as an example a byte addressed machine with a 32bit address space and pages 64 k bytes long.
[12 marks]
c) Explain the difference between primary memory and secondary memory. Describe the types of data storage technology used in these areas, and explain why they are appropriate to these parts of the computer system.
[16 marks]
4.
a) Explain why 2 's complement is the preferred system for representing signed binary numbers.
[4 marks]
b) Consider the 8 -bit binary number

$$
10110101
$$

Calculate its decimal value if it is interpreted as
(i) an unsigned integer
(ii) an integer in sign-and-magnitude format
(iii) a 2's complement integer
(iv) an excess-127 biased exponent
c) Write out the above 8 -bit number in hexadecimal notation.
[2 marks]
[Qu. 4 cont. over page]

[Qu.4) continued]

d)
(i) Complete the truth table below for a full subtractor, ie a device that subtracts the binary digit a_{2} from the binary digit a_{1} to give another binary digit, the difference d, taking into account a 'borrow in' $b_{\text {in }}$ from a previous subtraction step and passing a 'borrow out' $b_{\text {out }}$ to the next step

a_{1}	a_{2}	$\mathrm{~b}_{\text {in }}$	\mathbf{d}	$\mathrm{b}_{\text {out }}$
0	0	0	0	0
0	0	1	1	1
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(ii) Write down an algebraic expression for $b_{\text {out }}$ as a function of a_{1}, a_{2} and $b_{\text {in }}$ in first canonical form.
(iii) Simplify the expression you have obtained using a Karnaugh map.
(iv) Implement your simplified expression as a combinatorial circuit using AND, OR and NOT gates.
5.
a) What is meant by a bistable ?
b) Why are the ranges of input voltages defined as 'logical 0 ' and 'logical 1 ' greater than the corresponding output voltage ranges?
[4 marks]
c) What happens when both the R ('reset') and S ('set') inputs to an RS flip-flop are simultaneously equal to 1 ?
[3 marks]
d) Explain the advantages of the D-type flip-flop in comparison to the RS flip-flop. Refer to truth tables defining their operation as necessary .
e) Consider the clock and input waveforms below.

Provide a timing diagram for the Q output of a D flip-flop. Assume that the flip-flop is
(i) level sensitive
(ii) rising edge triggered
(iii) falling edge triggered

[Qu.5) continued]

f) Consider the sequential circuit below

Assuming that all flip-flops are reset to $\mathrm{Q}=0$ at $\mathrm{t}=0$, investigate the behaviour of the above circuit by copying and completing the table below

Time	\mathbf{X}	y_{1}	y_{2}	Q_{A}	y_{3}	Q_{B}
0	-	-	-	0	-	0
1	1	1	0	1	0	0
2	1					
3	1					
4	1					
5	1					
6	0					
7	1					
8	0					
9	0					
10	0					
11	0					
12	0					
13	1					
14	1					
15	1					

END OF PAPER

