SECTION A

1. a. Consider the following informally stated decision problem:

Instance: A graph G.
Question: Is G connected?
Explain, giving suitable examples, how this informally stated problem can be turned into a formal language.
b. Define what it means to say that an infinite set is countable.
[2 marks]
c. Let A be a finite alphabet, where $|A|>0$. Prove that the set of all formal languages over A is not countable.
[12 marks]
d. Give an argument that the set of recursively enumerable languages over A is countably infinite. What does this allow you to conclude.
2. a. Let L_{1} and L_{2} be two languages. Define what it means to say that L_{1} reduces to L_{2} (in symbols, $L_{1} \leq L_{2}$). Prove that if L_{1} is not recursive and $L_{1} \leq L_{2}$ then L_{2} is not recursive.
b. Discuss, including proofs where necessary, what can be concluded if $L_{1} \leq L_{2}$ and L_{1} is recursive.
c. A relation R is reflexive if for all x we have $x R x$. It is transitive if whenever $x R y$ and $y R z$ we also have $x R z$. Prove that \leq is reflexive and transitive.
[6 marks]
d. A relation R is symmetric if whenever we have $x R y$ we also have $y R x$. Prove that \leq is not symmetric.
[6 marks]
e. Let L be a finite language. What can be said about whether L is recursive or otherwise, in the absence of further information?
3. a. Define what it means to say that a language L is recursive, and what it means to say that a language L is recursively enumerable. Why is it necessary to make a distinction between these two concepts?
b. Prove that any recursive language is recursively enumerable.

> [2 marks]
c. Define the Halting Problem for Turing Machines and prove that it is not recursive.
d. Prove, by reducing the empty tape halting problem or otherwise, that the following decision problem is unsolvable.

Instance: Two Turing machines, M_{1} and M_{2} and an input alphabet T common to both of them.

Question: Let $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ be the languages accepted by M_{1} and M_{2}. Is it the case that $\left|L\left(M_{1}\right) \cup L\left(M_{2}\right)\right|>2$?

SECTION B

4. a. Let A and B be decision problems and suppose $A \in \mathbf{P}$. Suppose further that B has at least one yes-instance and at least one no-instance. Prove that $A \leq B$.
[8 marks]
b. Define the 2-satisfiability problem 2SAT for propositional logic.
c. Show that 2 SAT is in \mathbf{P}.
[12 marks]
d. Assuming that $\mathbf{P} \neq \mathbf{N P}$, does 3SAT reduce in p-time to 2 SAT? Give reasons.

$$
\text { [Total }=33 \text { marks }]
$$

5. Let A and B be decision problems.
a. Say what it means for one decision problem to reduce to another in p-time.
b. What does it mean if we say that A is p-time equivalent to B ?
c. Prove that p-time equivalence is reflexive, symmetric and transitive.
[11 marks]
d. If A and B are both NPC decision problems, does it follow that A is p-time equivalent to B ? Justify your answer.
[11 marks]
6. a. Define the class of all NP-hard decision problems (but you do not have to define the class NP).
b. Define the propositional satisfaction problem (PSAT).

Consider the following 4-vertex cover problem (4VC). An instance is any undirected graph $G=(V, E)$ where V is the set of vertices and $E \subseteq V \times V$ is the set of edges. G is a yesinstance of 4 VC if there is a set of vertices $W \subseteq V$ such that

- W 'covers' G, i.e. for each edge $e \in E$ there is a vertex $v \in W$ with $v \in e$.
- $|W| \leq 4$.
c. Prove that $4 \mathrm{VC} \leq$ PSAT. For this you should use a propositional language with one proposition p_{v} for each vertex $v \in V$.
d. Given that PSAT is NP-complete, and using the reduction in the last question, can you infer anything about the complexity of 4 VC ? If so, what can you infer?
[6 marks]
e. What is the best complexity class (with respect to p-time reduction) that 4 VC can be included in? Briefly justify your answer.

