
A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 1 –

Answer Question 1 and any other two questions

1. Answer the following four parts

a. Explain in less than 50 words the concept of transactions and then define the four

characteristic properties of transactions in less than 20 words each.

[10 marks]

Transactions are sequences of operations that are clustered together into a unit. Transac-
tions have ACID properties which means that they are atomic, consistency preserving, iso-
lated and durable. Atomicity means that the transaction is executed completely or not at all.
Consistency preserving means that the transaction leads from one consistent state to the
other. Isolation means that the effect of the transaction is not visible to concurrent transac-
tion. Durability means that the effect of the transaction persists once it has been completed.

b. Explain the two-phase locking protocol. Does it achieve serialisability? How can

deadlocks occur and how are they dealt with?

[8 marks]

The first phase of 2PL acquires all locks that are needed for a transaction and the second
phase releases them. Serialisability is achieved if no further locks are acquired after the first
lock has been released. Two-phase locking achieves serialisability but is not deadlock free.
Databases usually detect deadlocks and resolve them by aborting transactions.

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 2 –

c. Two transactions are run concurrently against a bank’s database. The first transac-

tion transfers funds from one account to a second account. The second transaction

sums up the balances of both accounts. Use FSP to model two-phase locking in these

transactions and a lock compatibility matrix that includes both Read and Write locks.

[8 marks]

const Read=0
const Write=1
range LOCK=Read..Write
range NUMLOCKS=0..9
ACCOUNT = ACCOUNT[0][0],
ACCOUNT[reading:NUMLOCKS][writing:NUMLOCKS] = (
when (writing==0) lock[Read] -> ACCOUNT[reading+1][writing]
|when (reading==0 && writing==0)

lock[Write]->ACCOUNT[reading][writing+1]
|when (reading>0) unlock[Read] -> ACCOUNT[reading-1][writing]
|when (writing>0) unlock[Write] -> ACCOUNT[reading][writing-1]
|credit -> ACCOUNT[reading][writing]
|debit -> ACCOUNT[reading][writing]
|balance -> ACCOUNT[reading][writing]).
||ACCOUNTS = (a:ACCOUNT|| b:ACCOUNT).

TRANSFER = (a.lock[Write]-> b.lock[Write] ->
a.credit -> b.debit ->
a.unlock[Write] -> b.unlock[Write]->TRANSFER).

BALANCE = (a.lock[Read]-> b.lock[Read] ->
a.balance -> b.balance->
a.unlock[Read] -> b.unlock[Read]->BALANCE).

||BANK = (ACCOUNTS || TRANSFER || BALANCE).

d. Extend the above example to specify serializability of the two transactions as an FSP

safety property. How would you use the Labelled Transition System Analysis Tool

to prove serialisability?

[8 marks]

property SERIALIZABILITY=(a.credit->b.debit->SERIALIZABILITY
|a.balance->b.balance->SERIALIZABILITY).

To prove serializability using LTSA, compose SERIALIZABILITYwith BANK and perform a
safety check.

[Total 34 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 3 –

2. Threads in Java – Answer the following three parts

a. In the C340 course, we have used Java as an example programming language that

supports concurrency. Model Java threads as a labelled transition system (LTS). Use

that model to explain the semantics of Java threads.

[16 marks]

A created thread can be in four different states. It can be running (2), runnable (4), not
runnable (3) and terminated (1). A Java thread is started by operation start. A running thread
may explicitly yield processor time and become runnable. It may implicitly be forced to sleep
and become runnable by the Java virtual machine. A runnable thread may be dispatched by
the virtual machine and become running again. A running or runnable thread may suspend
execution and become not runnable. A not runnable thread can resume execution and then
it becomes runnable. A thread in any state terminates through a stop operation.

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 4 –

b. Consider the following FSP specification of the dining philosophers problem:

PHIL=(hungry->left.get->right.get->eating->

left.put->right.put->thinking->PHIL).

FORK = (left.get-> left.put -> FORK |

right.get->right.put -> FORK).

||COLLEGE(N=5)= (phil[0..N-1]:PHIL||fork[0..N-1]:FORK)

/{phil[i:0..N-1].left/fork[i].left,

phil[i:0..N-1].right/fork[((i-1)+N)%N].right}.

Design a UML class diagram for a concurrent implementation of that specification in

a Java applet. Define classes, attributes, operations and relationships. Identify those

operations that have to be synchronized and argue why this need arises.

[8 marks]

Applet Thread

Both operations put and
get need to be
synchronized

phil

*

display

Diners

init()
start()

forks

*

left

Philosopher

run()
*

right

Fork

- id : int
- taken : boolean

+ put()
+ get()

*

1

1 1

1

PhilCanvas

+ paint()
+ update()
+ drawtable()

display

1

1

1

1

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 5 –

c. The above FSP specification is unsatisfactory because it results in a deadlock if all

philosophers pick up the left fork at the same time. If the design you provided in

response to the above question is a proper implementation of the model it will have

the same flaw. The deadlock can be avoided if one philosopher always picks up the

right fork first, but this has the flaw that it is unfair. Find a fair strategy for deadlock

avoidance and modify both the FSP specification and your design so that they are

both fair and deadlock-free.

[9 marks]

One solution is to make the two actions of picking up left and right forks atomic. The FSP
model changes into:

PHIL=(hungry->forks.get->eating->
forks.put->thinking->PHIL).

FORK = (left.get -> left.put -> FORK |
right.get->right.put -> FORK).

||COLLEGE(N=5)= (phil[0..N-1]:PHIL||fork[0..N-1]:FORK)
/{phil[i:0..N-1].forks/fork[i].left,
phil[i:0..N-1].forks/fork[((i-1)+N)%N].right}.

In the design this involves changing the Fork monitor class into a class Table that main-
tains all chopsticks and can get and put the left and right chopsticks for a philosopher as an
atomic action.

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 6 –

3. Answer the following four parts

a. Explain the following concepts in less than 30 words each

i. Deadlock
A process is in a deadlock if it is blocked waiting for a condition that will never become
true

[2 marks]

ii. Livelock
A process is in a livelock if it is spinning while waiting for a condition that will never
become true.

[2 marks]

iii. Liveness Property
A liveness property asserts that something good eventually happens.

[2 marks]

iv. Progress
A progress property asserts that whatever state a system is in, it is always the case that
a specified action will eventually be executed.

[2 marks]

v. Fair Scheduling
If a transition from a set is chosen infinitely often and every transition in the set will be
executed infinitely often, the scheduling policy is said to be fair.

[2 marks]

[Subtotal 10 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 7 –

b. Consider a small airport that has only one runway. The air traffic control tower of the

airport needs to coordinate arriving flights. Pilots of incoming aircraft notify the air

traffic controller that they are entering the airspace and ask for permission to land.

The air traffic controller grants permission to land only to one aircraft at a time in the

order they entered the air space. Model this air traffic control problem in FSP. You

can assume that the airspace has restricted capacity.

[9 marks]

const MaxIF=4
range IF=0..MaxIF

ARRIVE=ARRIVE[0],
ARRIVE[num:IF]=(

enterarrq[num]->ARRIVE[(num+1)%MaxIF]).

ARRIVALQ=(enterarrq[num:IF]->ARRIVALQ[num]),
ARRIVALQ[n0:IF]=(enterarrq[num:IF]->ARRIVALQ[n0][num]

|perm_land[n0]->land[n0]->ARRIVALQ),
ARRIVALQ[n0:IF][n1:IF]=(enterarrq[num:IF]->ARRIVALQ[n0][n1][num]

|perm_land[n0]->land[n0]->ARRIVALQ[n1]),
ARRIVALQ[n0:IF][n1:IF][n2:IF]=(

enterarrq[num:IF]->ARRIVALQ[n0][n1][n2][num]
|perm_land[n0]->land[n0]->ARRIVALQ[n1][n2]),

ARRIVALQ[n0:IF][n1:IF][n2:IF][n3:IF]=(
perm_land[n0]->land[n0]->ARRIVALQ[n1][n2][n3]).

||AIRPORT=(ARRIVE||ARRIVALQ).

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 8 –

c. The airport also has aircraft departing from the airport. Arriving flights are given

priority over departing flights. Extend the above FSP model in such a way that the

air traffic control system manages incoming and outgoing flight. For safety reasons

there must only be one aircraft on the runway.

[8 marks]

const MaxIF=4
range IF=0..MaxIF

ARRIVE=ARRIVE[0],
ARRIVE[num:IF]=(

enterarrq[num]->ARRIVE[(num+1)%MaxIF]).

ARRIVALQ=(enterarrq[num:IF]->ARRIVALQ[num]),
ARRIVALQ[n0:IF]=(enterarrq[num:IF]->ARRIVALQ[n0][num]

|perm_land[n0]->land[n0]->ARRIVALQ),
ARRIVALQ[n0:IF][n1:IF]=(

enterarrq[num:IF]->ARRIVALQ[n0][n1][num]
|perm_land[n0]->land[n0]->ARRIVALQ[n1]),

ARRIVALQ[n0:IF][n1:IF][n2:IF]=(
enterarrq[num:IF]->ARRIVALQ[n0][n1][n2][num]
|perm_land[n0]->land[n0]->ARRIVALQ[n1][n2]),

ARRIVALQ[n0:IF][n1:IF][n2:IF][n3:IF]=(
perm_land[n0]->land[n0]->ARRIVALQ[n1][n2][n3]).

DEPART=DEPART[0],
DEPART[num:IF]=(

enterdepq[num]->DEPART[(num+1)%MaxIF]).

DEPARTUREQ=(enterdepq[num:IF]->DEPARTUREQ[num]),
DEPARTUREQ[n0:IF]=(enterdepq[num:IF]->DEPARTUREQ[n0][num]

|perm_takeoff[n0]->takeoff[n0]->DEPARTUREQ),
DEPARTUREQ[n0:IF][n1:IF]=(

enterdepq[num:IF]->DEPARTUREQ[n0][n1][num]
|takeoff[n0]->DEPARTUREQ[n1]),

DEPARTUREQ[n0:IF][n1:IF][n2:IF]=(
enterdepq[num:IF]->DEPARTUREQ[n0][n1][n2][num]
|perm_takeoff[n0]->takeoff[n0]->DEPARTUREQ[n1][n2]),

DEPARTUREQ[n0:IF][n1:IF][n2:IF][n3:IF]=(
perm_takeoff[n0]->takeoff[n0]->DEPARTUREQ[n1][n2][n3]).

ATC=(perm_land[n:IF]->land[n] ->ATC
|perm_takeoff[n:IF]->takeoff[n]->ATC).

||AIRPORT=(ARRIVE||ARRIVALQ||DEPART||DEPARTUREQ||ATC)
<<{perm_land[IF]}.

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 9 –

d. The air traffic control system of the airport is safety-critical. You therefore have to

prove that your above FSP specification is correct. The correctness criteria that need

to be checked are that (a) the model does not permit deadlocks and (b) incoming and

outgoing aircraft can eventually land and take off, respectively. Modify your spec-

ification in such a way that your model can be checked against safety properties (a)

and (b) in a fully automatic way by the LTSA.

[6 marks]

Nothing has to be changed for property (a). LTSA can check any model for potential dead-
locks. Property (b) can be expressed as

progress ARRIVING={perm_land[IF]}
progress DEPARTING={perm_takeoff[IF]}

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 10 –

4. Answer the following four parts

a. It is often important that the specification and implementation of concurrent systems

guarantee certain properties. In less than a total of 200 words,

i. Define what safety properties are
[2 marks]

Safety properties assert that nothing ’bad’ will ever happen during the execution of a
concurrent program

ii. Give an example of a safety property
[2 marks]

There is never more than one green traffic light on a four way junction

iii. Indicate the principal ways to specify safety properties in FSP
[2 marks]

Either by safety property that is a process that is composed with the process to be
checked, or by implicit transitions to an error state.

iv. Explain how safety properties can be verified using labelled transition system

analysis
[3 marks]

An LTS is generated with an error state. Transitions to the error state are added for any
action that would violate the property. Then reachability analysis is used to search for
a path that would lead to the error state.

[Subtotal 9 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 11 –

b. Imagine a cross-country railroad that only has a single track. It connects village N

with village S via village M. Before the station at village M, the track forks and after

the station of M the tracks join again, enabling trains to pass each other. You are

being asked to write a formal model for the replacement of the railroad’s signalling

equipment. Use FSP to model the synchronization of rail traffic between S and N in

both directions. You may assume that the tracks that lead to M and the station of M

have a limited capacity.

[10 marks]

const MaxTrains=4
range Trains=0..MaxTrains
NM=NM[0][0],
NM[nb:Trains][mb:Trains]=
(when (nb==0 && mb<MaxTrains) go_nm->NM[nb][mb+1]
|when (mb==0 && nb<MaxTrains) go_n->NM[nb+1][mb]
|when (mb>0) arr_at_m_from_n->NM[nb][mb-1]
|when (nb>0) arr_at_n->NM[nb-1][mb]
|when (nb>0&&mb>0) unsafe->ERROR).

SM=SM[0][0],
SM[mb:Trains][sb:Trains]=
(when (mb==0 && sb<MaxTrains) go_s->SM[mb][sb+1]
|when (sb==0 && mb<MaxTrains) go_sm->SM[mb+1][sb]
|when (sb>0) arr_at_s->SM[mb][sb-1]
|when (mb>0) arr_at_m_from_s->SM[mb-1][sb]
|when (mb>0&&sb>0) unsafe->ERROR).

N=(go_nm->N
|arr_at_n->N).

S=(go_sm->S
|arr_at_s->S).

M=M[0][0],
M[nb:Trains][sb:Trains]=(
when (sb<MaxTrains) arr_at_m_from_n -> M[nb][sb+1]
|when (nb<MaxTrains) arr_at_m_from_s -> M[nb+1][sb]
|when (sb>0) go_s -> M[nb][sb-1]
|when (nb>0) go_n -> M[nb-1][sb]).
||COUNTRYRR=(NM||SM||N||S||M).

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 12 –

c. We do not want trains to crash on the single tracks. The railtrack company wants to

ensure that by demanding there are no trains running in opposite directions on the

same segment at any point in time. Extend the above model with either an explicit

or implicit FSP safety property such that it can be proven fully automatically.

[5 marks]

Extend NM with a further non-deterministic choice

|when (nb>0&&mb>0) unsafe->ERROR)

extend SM with a further non-determistic choice

|when (mb>0&&sb>0) unsafe->ERROR

d. It is also undesirable for passengers to be stuck on the tracks or at M because of dead-

lock situations. Is your FSP model deadlock-free? What do you have to modify so

that deadlocks do not occur?

[9 marks]

The above specification is not deadlock free. A deadlock can occur if both N and S send
trains in the opposite directions. This situation can be resolved, by limiting the number of
trains that are going into a particular direction to the number of trains that can be kept at
station M. A replacement of processes N and S with the following resolves the situation.

N=N[0],
N[sb:Trains]=(
when (sb<MaxTrains)go_nm->N[sb+1]
|go_s -> N[sb-1]
|arr_at_n->N[sb]).
S=S[0],
S[nb:Trains]=(
when (nb<MaxTrains)go_sm->S[nb+1]
|go_n -> S[nb-1]
|arr_at_s->S[nb]).

[Total 33 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 13 –

5. Answer all four parts

a. Answer in less than 100 words each of the following questions

i. What are the differences between operating system processes and threads in a

programming language, such as Java?
[5 marks]

Threads are executed within a process. Threads are more light-weight than processes.
Processes have an owner, they are protected against each other by the operating sys-
tem, the operating system may collect accounting information for each process. The
processes of a thread share the same owner, they share the memory allocated by the
process.

ii. Explain the principal ways to implement threads in Java.
[5 marks]

Threads are implemented by extending class Thread or by implementing Interface
Runnable. In both cases, the threads are Java objects. They start executing when
the start method is invoked and may be interrupted.

[Subtotal 10 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 14 –

b. Your company won a contract to build the control software for the lifts of a number

of four storey buildings. On each floor there are buttons to request the lift to arrive.

These buttons are operated by users of the lift concurrently. The buttons signal to the

user when the lift has arrived on the floor. The porters of the buildings where the lifts

will be installed require a control display so that they can see how the lift is chang-

ing its position. We neglect the interior control panel of the lift. As the user interface

shall be portable across platforms, your manager asks you to provide a design for the

user interface using Java. Use the Unified Modeling Language to design this concur-

rent Java program. Include classes, relationships, attributes and operations that are

necessary for the lift control applet.

[5 marks]

ThreadApplet

1

lift
1

display

display

*

floors

1

LiftController

init()
start()

lift

Lift

at_level : int = 1
direction : enum{down,none,up} = none
requests : Floor[]

request()
move()
Lift()

1

1
display

Floor

floor_nr : int

run()
call()*1

LiftCanvas

paint()
update()
drawtable()

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 15 –

c. Implement those parts of your design, which embed the control algorithms for the

lift software. Use Java as a programming language.

[14 marks]

A working implementation is given below. Students would receive full marks if they demon-
strate correct implementation of concurrent threads and implement the algorithms of all con-
trol operations run in Floor and Lift, an equivalent of add request. properly.

public class LiftController extends Applet {
...
public boolean handleEvent(Event event) {
int i;
Floor called;
for (i=1; i<=Lift.MAXFLOORS; i++)
if (event.target==callbuttons[i]) {
called=new Floor(i,callbuttons[i],lift);
called.start();
return(true);

}
return(super.handleEvent(event));

}
};

class Floor extends Thread {
public int floor_nr;
Lift lift;
Button mybutton;

public Floor(int nr, Button b, Lift l) {
floor_nr=nr; lift=l; mybutton=b;

};

public void run() {
lift.add_request(this); // do the request
System.out.println("Arrived at floor "+floor_nr); // then die

};
};

class Lift extends Thread {
static public int MAXFLOORS=4;
int at_level=1;
DisplayCounter display;
int direction=1; // -1 to go down, 1 to go up
Floor[] requests=new Floor[MAXFLOORS+1];

public Lift(DisplayCounter d){
display=d;

};

synchronized public void add_request(Floor from) {
requests[from.floor_nr]=from;
while (from.floor_nr!=at_level)

try {
wait();

} catch (InterruptedException e){}
requests[from.floor_nr]=null;

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 16 –

}

synchronized private boolean request(int dir) {
// returns true if we have to go up
int i;
i=at_level;
while (i<=MAXFLOORS && i>0){
if (requests[i]!=null) {
return(true);

}
i=i+dir;

}
return(false);

}

synchronized private void move(int dir) {
at_level+=dir;
if (dir>0) display.inc(); else display.dec();
notifyAll();

}

public void run() {
while (true) {
try {

sleep(5000);
} catch (InterruptedException e){}

if (request(direction))
move(direction);

else
if(request(direction*(-1))){
direction=direction*(-1);
move(direction);

}
}

}
}

d. Discuss the following properties of your implementation and how you would prove

them?

i. Possibilities of Deadlocks
There are no deadlocks in the above control algorithm. To prove this we could model
the concurrent threads in FSP and use reachability analysis

ii. Liveness Properties
The lift eventually will arrive at the requested floor. To prove this use progress properties
on the FSP model.

[4 marks]

[Total 33 marks]

END OF PAPER

