Answer Question 1 and any other two questions

1. Answer the following four parts

a. Explain in less than 50 words the concept of transactions and then define the four

characteristic properties of transactionsin less than 20 words each.
[10 marks]

Transactions are sequences of operations that are clustered together into a unit. Transac-
tions have ACID properties which means that-they are atomic, consistency preserving, iso-
lated and durable. Atomicity means that the transaction is executed completely or not at all.
Consistency preserving means that the transactiondeads from one consistent state to the
other. Isolation means that the effect of the transaction is not visible to concurrent transac-
tion. Durability means that the effect of the transaction persists once it has been completed.

b. Explain the two-phase locking protacol. Does it achieve serialisability? How can

deadlocks occur and how are they dealt with?
[8 marks]

The first phase of 2PL acquires all locks that are needed for a.transaction and the second
phase releases them. Serialisability is achieved if no further locks.are acquired after the first
lock has been released. Two-phase locking achieves serialisability but is not deadlock free.
Databases usually detect deadlocks and resolve them by aborting transactions.

TURN OVER

2

c. Two transactions are run concurrently against a bank’s database. The first transac-
tion transfers funds from one account to a second account. The second transaction
sums up the balances of both accounts. Use FSPto model two-phaselockinginthese

transactions and alock compatibility matrix that includes both Read and Writelocks.

[8 marks]

const Read=0
const Wite=1
range LOCK=Read..Wite
range NUMLOCKS=0. .9
ACCOUNT = ACCOUNT[0] [0],
ACCOUNT] r eadi ng: NUMLOCKS] [wri ti‘/ng: NUMLOCKS] = (
when (writing==0) |ock[Read] -> ACCOUNT[readi ng+1][w i.ting]
| when (readi ng==0 && writing==0)
| ock[Wi te] ->ACCOUNT[r eadi ng] [wri tinng+1]
| when (readi ng>0) unl ock][Read] -> ACCQUNI[r eadi ng- 1] [wri ti ng]
| when (writing>0) unlock[Wite] -> ACCCUNT[readi ng][writing- 1]
|credit -> ACCOUNT[readi ng][wri ti ng]
| debit -> ACCOUNT[readi ng][witing]
| bal ance -> ACCOUNT[r'eadi ng].[writing]).
| | ACCOUNTS = (a: ACCOUNT] | - b: ACCOUNT) .

TRANSFER = (a.lock[Wite]-> b.lock[Wite] ->

a.credit => b.debit ->
a. unlock[Wite] => b.unl ock[Wite]->TRANSFER) .

BALANCE = (a. l'ock[Read] -> b. |l ock[Read] ->
a. bal ance’ -> b. bal ance- >
a. unl ock[Read] -> b. unl ock[Read]- >BALANCE) .

| | BANK = (ACCOUNTS || TRANSFER || BALANCE).

d. Extendthe above exampleto specify serializability of thetwo transactionsas an FSP
safety property. How would you use the Labelled Transition System Analysis Tool

to prove seriaisability?
[8 marks]

property SERI ALI ZABI LI TY=(a.credit->b. debit->SERI ALl ZABI LI TY
|a. bal ance- >b. bal ance- >SERI ALI ZABI LI TY).

To prove serializability using LTSA, compose SERI ALI ZABI LI TY with BANK and perform a
safety check.

[Total 34 marks]

CONTINUED

—3-
2. Threadsin Java— Answer the following three parts

a. Inthe C340 course, we have used Java as an example programming language that
supports concurrency. Model Javathreadsasalabelled trangition system (LTS). Use

that model to explain the semantics of Java threads.
[16 marks]

mk\hstnp____‘__ﬂgp atch

stop

A created thread can be in four different states. It can be running (2),.runnable (4), not
runnable (3) and terminated (1).-A Java thread is started by operationsstart. A running thread
may explicitly yield processortime and become runnable. It may implicitly be forced to sleep
and become runnable by the Java virtual machine. A runnable thread.may be dispatched by
the virtual machine and become running again. A running or runnable thread may suspend
execution and become not runnable. A not runnable thread can resume execution and then
it becomes runnable. A thread in.any state terminates through'a stop operation.

TURN OVER

—4—

b. Consider the following FSP specification of the dining philosophers problem:

PH L=(hungry->l eft.get->right. get->eating->

| eft. put->right. put->thinking->PHL).

FORK = (left.get-> left. put
ri ght.get->right.put -> FORK).

| | COLLEGE(N=5) = (phil[0..N-1]: PH L| | fork[O0.. N 1] : FORK)

[{phil[i:0..N-1].left/fork[i].left,

-> FORK |

phil[i:0..N1].right/fork[((i-1)+N)%\ .right}.

Design aUML classdiagram for a concurrent implementation of that specificationin

aJava applet. Define classes, attributes, operations and relationships. |dentify those

operations that have to be synchronized and argue why this need arises.

Applet

4¥

Diners

init()
start()

displayii forks

PhilCanvas

phil

Thread

i

Philosopher

*

*

display

run()

left 1 1
1 1 ight

Fork
-id :int
- taken : boolean

+ paint()
+ update()
+ drawtable()

+put()
+get()

Both operations put and
get need to be
synchronized

[8 marks]

CONTINUED

-5—

c. The above FSP specification is unsatisfactory because it results in a deadlock if all
philosophers pick up the left fork at the same time. If the design you provided in
response to the above question is a proper implementation of the model it will have
the same flaw. The deadlock can be avoided if one philosopher always picks up the
right fork first, but thishasthe flaw that it is unfair. Find afair strategy for deadlock
avoidance and modify both the FSP specification.and your design so that they are
both fair and deadl ock-free.

[9 marks]

One solution is to make the two actions of picking up left and right forks atomic. The FSP
model changes into:

PHI L=(hungry->f or ks. get - >eat i ng- >
f or ks. put - >t hi nki ng->PHI L) .
FORK = (left.get -> left.put -> FORK |
right.get->right.put -> FORK).
| | COLLEGE(N=5) = (phil[0..N-1]:PH L| | fork[0.. N 1] : FORK)
[{phil[i:0..N1].forks/fork[i].left,
phil[i:0..N1].forks/fork[((i=21)+N) %\ .right}.

In the design this involves changing the For k.monitor class into'a class Tabl e that main-
tains all chopsticks and can get and put the left and right chopsticks for a philosopher as an
atomic action.

[Total 33 marks]

TURN OVER

3. Answer the following four parts

a. Explain the following concepts in less than 30 words each

Deadlock
A process is in a deadlock if it is blocked waiting for a condition-that will never become
true

[2 marks]

ii. Livelock

A process is in a livelock if it is spinning while waiting for a condition that will never
become true.
[2 marks]

Liveness Property
A liveness property asserts that something good eventually happens.
[2 marks]

Progress
A progress property asserts that whatever state a system s in, it is always the case that
a specified action will eventually be executed.

[2 marks]

Fair Scheduling
If a transition from a set is chosen infinitely often and.every transition in the set will be
executed infinitely often, the scheduling policy is said to be fair.

[2 marks]

[Subtotal 10 marks]

CONTINUED

—7—

b. Consider asmall airport that hasonly one runway. Theair traffic control tower of the
airport needs to coordinate arriving flights. Pilots of incoming aircraft notify the air
traffic controller that they are entering the airspace and ask for permission to land.
Theair traffic controller grants permission to land only to one aircraft at atimein the
order they entered the air space. Modél this air traffic control problem in FSP. You

can assume that the airspace has restricted capacity.
[9 marks]

const Maxl F=4
range | F=0.. MaxI F

ARRI VE=ARRI VE[0] ,
ARRI VE[num | F] =(
ent erarrg[nuni - >ARRI VE[(numt1) %vaxI F]) .

ARRI VALQ=(ent erarrq[num | F] - SARRI VALQ nunj) ,
ARRI VALQ nO: | F] =(ent erarrg[num | F] - >ARRI'VALQ nO0] [num
| per m_| and[n0] - >l and[n0] - >ARRI VALQ),
ARRI VALQ nO: | F] [n1: I F] =(enterarrq[num | F] - >ARRI VAL{ nO] [n1] [num
| per m:l.and[n0] - >l and[n0] - >ARRI'VAL{ n1]),
ARRI VALQ nO: | F] [n1: 1 F] ['n2:1 F] =(
enterarrg[num | F] ->ARRI VALQ n0] [n1] [n2]:[.num
| per m_| and[n0] - >l and[n0] - >ARRI VAL n1] [n2]),
ARRI VALQ nO: | F] [nd: | FJ[n2: 1 F1 [n3: 1 F] =(
per m | and[n0] ->l and[n0] - >ARRI VALQ n1] [n2] [n3]).

| | Al RPORT=(ARRI VE| | ARRI VALQ) .

TURN OVER

8-

c. The airport also has aircraft departing from the airport. Arriving flights are given
priority over departing flights. Extend the above FSP model in such away that the
air traffic control system manages incoming and outgoing flight. For safety reasons

there must only be one aircraft on the runway.
[8 marks]

const Maxl F=4
range | F=0.. MaxI F

ARRI VE=ARRI VE[0] ,
ARRI VE[num | F] =(
ent erarrg[nuni - >ARRI VE[(numt1) %vax| F]).

ARRI VALQ=(ent erarrq[num | F] - >ARRI VAL nuni) ,
ARRI VALQ nO: | F] =(ent erarrg[num | F] - >ARR VALQ n0] [nuni
| per m_| and[n0] - >l and[n0O] - >ARRI VALQ ,
ARRI VALQ nO: | F] [n1: 1 F] =(
enterarrg[num | F] #>ARRI VALQ n0] [n1] [num
| per m_| and[n0] - >l and[n0].- >ARRI' VALQ n1]),
ARRI VAL nO: I F] [n1: 1 F] [n2: 1 F] =(
enterarrg[numl.F] - >ARRI VALJ n0] [n1] [n2] [‘num
| per m_| and[n0).- >l'and[n0] - >ARRI VAL{ n1] [n2].)
ARRI VALQ nO: | F] [nl: 1 F][n2:1 F1[n3: 1 F] =(
per m | and[n0] - >l'and[n0] - >ARRI VALQ n1].[n2] [n3]).

DEPART=DEPART] 0] ,
DEPART[num | F] =(
ent er depg[nuni - >DEPART[(numt1) %vaxI F]) .

DEPARTUREQ=(ent er depq[num | F] - >DEPARTUREQ num),
DEPARTUREQ nO:| F] =(ent er depg[num | F] - >DEPARTUREQ n0] [nun
| per m takeof f [nO] - >t akeof f[n0] - >DEPARTUREQ) ,
DEPARTUREQ nO: | F] [n1: 1 F]-=(
enter depg[num | F] - >DEPARTUREQ nO] [n1] [num
| t akeof f[n0] - >DEPARTURE(Q n1]),
DEPARTUREQ nO: | F] [n1: TR [n2: 1 F] =(
ent er depg[num | F] - >SDEPARTUREQ nO] [n1] [n2] [nun]
| perm t akeof f [n0] - >t akeof f [n0] - >DEPARTUREQ n1] [n2]),
DEPARTUREQ nO: | F1.[nl: I F] [n2:d F] [n3: | F] =(
per mt akeof f [n0]/->t akeof f [n0] - >DEPARTUREQ n1] [n2] [n3]) .

ATC=(perm.l and[n: | F] - >l and[n]. - >ATC
| per m t akeof f [n: | F] - >t akeof f [n] - >ATC) .

| | AI/RPORT=(ARRI VE| | ARRI"'VALQ | DEPART| | DEPARTUREQ | ATC)
<<{perm_| and['LF]}.

CONTINUED

—9-—

d. Theair traffic control system of the airport is safety-critical. You therefore have to
provethat your above FSP specification is correct. The correctness criteriathat need
to be checked are that (a) the model does not permit deadlocksand (b) incoming and
outgoing aircraft can eventually land and take off, respectively. Modify your spec-
ification in such away that your model can be checked against safety properties (a)

and (b) in afully automatic way by the LTSA.
[6 marks]

Nothing has to be changed for property (a). LTSA can check any model for potential dead-
locks. Property (b) can be expressed as

progress ARRI VI NG={ per m | and[| F]}
progress DEPARTI NG={ per m t akeof f[| F]}

[Total.33 marks]

TURN OVER

—10-

4. Answer the following four parts

a. Itisoftenimportant that the specification and implementation of concurrent systems

guarantee certain properties. In less than atotal of 200 words,

Define what safety properties are
[2 marks]

Safety properties assert that nothing 'bad’ will ever happen during the execution of a
concurrent program

. Give an example of a safety property

[2 marks]
There is never more than one green traffic light on a four way junction

Indicate the principal ways to specify safety propertiesin FSP
[2 marks]

Either by safety property that is a process that.is-composed with the process to be
checked, or by implicit transitions to an error state.

Explain how safety properties can be verified using labelled transition system

analysis
[3 marks]

An LTS is generatedwith an error state. Transitions to the error state are added for any
action that would violate the property. Then reachability analysis is used to search for
a path that would lead to the error state.

[Subtotal 9 marks]

CONTINUED

—11-

b. Imagine a cross-country railroad that only has a single track. It connects village N
with village Sviavillage M. Beforethe station at village M, thetrack forksand after
the station of M the tracks join again, enabling trains to pass each other. You are
being asked to write aformal model for the replacement of the railroad’s signalling
equipment. Use FSP to model the synchronization of rail traffic between Sand N in
both directions. You may assume that the tracksthat lead to M and the station of M

have alimited capacity.
[10 marks]

const ©MaxTrai ns=4
range Trai ns=0..MaxTrai ns
NM=NM 0] [O],
NM nb: Trai ns] [nb: Trai ns] =
(when (nb==0 && nb<MaxTrai ns) go.nm >NM nb] [mnb+1]
| when (nmb==0 && nb<MaxTrains) go_n->NM nb+1] [nb]
| when (nb>0) arr_at_m from.n->NM nb] [nb- 1]
| when (nb>0) arr_at_n->NM nb- 1] [nb]
| when (nb>08&&b>0) unsafe- >ERROR).
SM=SM 0] [O],
SM nb: Trai ns] [sb: Trai ns] =
(when (nmb==0 && sb<MaxTrai ns) go s->SM nb] [sh+1]
| when (sb==0 && nb<MaxTrai ns) go_sm >SM nb+1][sb]
| when (sb>0) arr_at_s->SM nb][sb- 1]
| when (nb>0) arr_at_m from s->SM nb- 1] [sb]
| when (nmb>0&&sb>0) unsafe->ERROR) .
N=(go_nm >N
| arr_at_n->N).
S=(go_sm >S
|arr_at _s->S).
M=M O] [0],
M nb: Trai ns][sb: Tr.ai ns] =(
when (sb<MaxTrains) arr_at mfromn -> M nb][sb+1]
| when (nb<MaxTrains) arr_at mfroms -> M nb+1][sb]
| when (sb>0) go_s -> M nb][sh-1]
| when (nb>0) go n -> M nb-1]['sh]).
| | COUNTRYRR=(NM | SM [N | S| [M.

TURN OVER

—-12 —

c. We do not want trainsto crash on the single tracks. The railtrack company wants to
ensure that by demanding there are no trains running in opposite directions on the
same segment at any point in time. Extend the above model with either an explicit

or implicit FSP safety property such that it can be proven fully automatically.
[5 marks]

Extend NMwith a further non-deterministic choice
| when (nb>0&&nbH>0) unsafe- >ERROR)
extend SMwith a further non-determistic choice

| when (nmb>08&&sb>0) unsafe- >ERROR

d. Itisasoundesirablefor passengersto bestuck onthetracksor at M because of dead-
lock situations. Is your FSP model deadlock-free? What do you have to.modify so

that deadlocks do not occur?
[9 marks]

The above specification is not deadlock.free. "A deadlock can occur.if both N and S send
trains in the opposite directions. This situation can be resolved, by.limiting the number of
trains that are going into a particular direction to the number of‘trains that can be kept at
station M. A replacement of processes N and S with the following resolves the situation.

N=N[O] ,
N[sb: Trai ns] =(
when (sb<MaxTrai ns) go_nm >N[sb+1]
| go_s -> N[sb-1]
| arr_at_n->N[sb])«
S=§[0],
S[nb: Trai ns] =(
when (nb<MaxTr ai.ns) go_sm >S[nb+1]
| go_n > S[nb-1]
|arr_at_s->S[nb]).

[Total 33 marks]

CONTINUED

—13-—

5. Answer all four parts

a. Answer in lessthan 100 words each of the following questions

What are the differences between operating system processes and threadsin a

programming language, such as Java?

[5 marks]
Threads are executed within a process. Threads are more light-weight'than processes.
Processes have an owner, they are protected against each otherby the operating sys-
tem, the operating system may collect accounting information for each process. The
processes of a thread share the same owner, they share the memory allocated by the
process.

. Explain the principa ways to implement threads inJava.

[5 marks]

Threads are implemented by extending class Thr ead or by implementing Interface
Runnabl e. In both cases, the'threads are Java objects. They start executing when
the st art method is invoked and may be interrupted.

[Subtotal 10 marks]

TURN OVER

—14-—

b. Your company won a contract to build the control software for the lifts of a number
of four storey buildings. On each floor there are buttonsto request the lift to arrive.
These buttons are operated by usersof thelift concurrently. The buttonssignal to the
user when thelift hasarrived on thefloor. The portersof the buildingswherethelifts
will be installed require a control display so that they can see how thelift is chang-
ing itsposition. We neglect theinterior control panel of thelift. Asthe user interface
shall be portable across platforms, your manager asks you to provide adesign for the
user interfaceusing Java. Usethe Unified Modeling Language to design this concur-
rent Java program. Include classes, relationships, attributes and operations that are

necessary for the lift control applet.
[5 marks]

Applet Thread

]

LiftController

f Eors floor_nr : int
init()

run()
start() 1 c]i_iSplay ¥ call()

Floor

display

Lift

LiftCanvas at_level :int=1
direction : enum{down,none,up} = none
i requests : Floor
paint() display q I
update() request()
drawtable() move()
Lift()

CONTINUED

—15—

c. Implement those parts of your design, which embed the control algorithms for the

lift software. Use Java as a programming language.

[14 marks]

A working implementation is given below. Students would receive full marks if they demon-
strate correct implementation of concurrent threads and implement the algorithms of all con-
trol operations r un in Fl oor and Li f t, an equivalent of add _r.equest . properly.

public class LiftController extends Applet {

} .

publ i c bool ean handl eEvent (Event event) {

int i;

Fl oor call ed;

for (i=1; i<=Lift. MAXFLOORS; i++)

if (event.target==call buttons[i]) {

cal | ed=new Fl oor (i, callbuttons[i],lift);
called.start();
return(true);

}

return(super. handl eEvent (event));

}

class Floor extends Thread {

c

public int floor_nr;
Lift lift;
Butt on mybutton;

public Floor(int nr, Button.b, Lift I) {
floor_nr=nr; Tift=l; mybutton=b;
b

public void run() {
lift.add request(this); // do the request
System out. println(*Arrived at floor "+floor_nr); // then die

b

ass Lift extends Thread {

static public int MAXFLOORS=4,

int at_[evel =1;

Di spl ayCounter displ ay;

int direction=1; // -1 to gosdown, 1 to go up
Fl.oor[] requests=new Flioor [MAXFLOORS+1];

public Lift(Di splayCounter d){
di spl ay=d;
14

synchroni zed public void add_request(Floor from {
requests[fromfloor_nr]=from
while (fromfloor_nr!=at_|evel)
try {
wait();
} catch (InterruptedException e){}
requests[fromfloor_nr]=null;

TURN OVER

— 16—

}

synchroni zed private bool ean request(int dir) {
/1 returns true if we have to go up
int i;
i =at_| evel;
whil e (i <=MAXFLOORS && i >0){
if (requests[i]!=null) {
return(true);

}

i=i+dir;

return(false);

}

synchroni zed private void nove(int dir) {
at_level +=dir;
if (dir>0) display.inc(); else display.dec();
noti fyAl Il ();

}

public void run() {
while (true) {
try {
sl eep(5000);
} catch (InterruptedException e){}
if (request(direction))
nove(di rection);
el se
i f(request(direction*(-1))){
direction=direction*(-1);
nove(di recti on);

}

d. Discussthe following propertiesof your.implementation and how you would prove
them?
i. Possibilities of Deadlocks

There are no deadlocks in the above control algorithm. To prove this we could model
the concurrent threads in FSP.and use reachability analysis

ii. .Liveness Properties
The lift eventually will arrive atthe requested floor. To prove this use progress properties
on the FSP model.

[4 marks]

[Total 33 marks]

END OF PAPER

