2.

a) Give a mathematical definition of the order notation

$$
\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{~g}(\mathrm{n}))
$$

and explain how this concept relates to the algorithmic idea of worst case analysis.
[6 marks]
b) Are the following statements true or false? Justify your answers using a careful argument based on the mathematical definition of ' O ' notation. (You may assume that $\mathrm{n}>0$.)
(i) $2^{\mathrm{n}+1} \in \mathrm{O}\left(2^{\mathrm{n}}\right)$
(ii) $2^{2 \mathrm{n}} \in \mathrm{O}\left(2^{\mathrm{n}}\right)$
(iii) $\log \left(\mathrm{a}^{\mathrm{n}}\right) \in \mathrm{O}(\mathrm{n})$
[9 marks]
c) Use a simple graphical argument to show that the discrete sum

$$
\sum_{i=1}^{n} f(i)
$$

is bounded above by the integral

$$
\int_{1}^{\mathrm{n}+1} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

provided that $f(t)$ is a non-decreasing function.
[5 marks]
d) Solve the following recurrence relations, simplifying your final answers using ' O ' notation (you may assume that n is a power of 2 where appropriate):
(i) $\mathrm{f}(0)=0$
$f(1)=2$
$f(n)=4 f(n-1)-3 f(n-2), \quad n>1$
(ii) $\mathrm{f}(0)=1$
$f(1)=4$
$f(n)=4 f(n-1)-4 f(n-2), \quad n>1$
[4 marks]
(iii) $f(1)=0$
$\mathrm{f}(\mathrm{n})=4 \mathrm{f}\left(\frac{\mathrm{n}}{2}\right)+\mathrm{n}, \quad \mathrm{n}>1$

