Section 1.. Answer at least ONE question

- 1. a. i. What is an articulation point in a graph?
 - ii. Give a graph of 8 nodes and 8 arcs that has 2 articulation points.

[5 marks]

- b. i. If a tree has n nodes, how many edges does it have? Explain your answer?
 - ii. What is a binary tree?
 - iii. What is the minimum and maximum height of a binary tree with n nodes? Explain you answer.
 - iv. What is a complete binary tree?
 - v. What is the minimum and maximum number of leaves in a complete binary treeof height h? Explain you answer.

[18 marks]

- c. i. What is a heap?
 - ii. Explain how to represent any array as a heap so that the original array can be recovered from the heap.
 - iii. Draw a heap that corresponds to the array [7, 8, 2, 3, 5, 6, 8].
 - iv. For the heap generated in part (iii), write down the sequence of nodes visited in a depth-first search and in a breadth-first search.

[10 marks]

[Total 33 marks]

a. In order to adopt a divide and conquer approach for an algorithmic problem, give
three requirements of the problem.
[6 marks]
b. Briefly explain how the following algorithms work and in particular explain how they
adopt the divide and conquer approach:
i. MergeSort
ii. Quicksort
[10 marks]
c. i. Explain how and why the QuickSort algorithm would use the InsertionSort al-
gorithm. [2 marks]
ii. Give an example of an array containing 9 items that would give worst case per-
formance by the InsertionSort algorithm. Explain how the inefficiency would
arise. [4 marks]
iii. Explain how a call to the pivot procedure of Quicksort works on the subarray
[5,3,7,2,1], assuming the usual ordering on the natural numbers. Give details of

the pointers used in the procedure.

[11 marks]

[Total 33 marks]

- 3. a. i. Describe the features of an algorithm that would allow it to be classified as a dynamic programming algorithm.
 - ii. Why is dynamic programming a useful approach to designing algorithms?
 - iii. Give a disadvantage of the dynamic programming approach.

[13 marks]

b. Consider the following adjacency matrix for a graph with the nodes $\{a, b, c, d, e, f\}$.

	a	b	c	d	e	f
a	0	7	∞	∞	4	∞
b	2	0	7	∞	8	8
c	∞	8	0	∞	8	3
d	∞	∞	∞	0	8	∞
e	∞	∞	∞	∞	0	1
f	∞	8	∞	∞	∞	∞

- i. Draw a graph corresponding to this adjacency matrix.
- ii. Using the graph generated in part (i), give the input matrix for Warshall's algorithm.
- iii. Using the input matrix generated in part (ii), give the intermediate matrices and final matrix that would be generated by Warshall's algorithm. Ensure that you present your answer clearly.
- iv. Using the final matrix generated in part (iii), explain the relationships between the nodes $\{a, b, c, d, e, f\}$.

[20 marks]

[Total 33 marks]

Section 2.. Answer at least ONE question

- 4. This question is about propositional logic.
 - a. Explain what is meant by disjunctive normal form.

[4 marks]

- b. Which of the following formulas are satisfiable?
 - 1. $(p \rightarrow \neg p)$
 - 2. $\neg(p \to (q \to p))$
 - 3. $\neg((p \rightarrow q) \rightarrow p)$
 - 4. $(((p \land q) \rightarrow r) \land \neg (p \rightarrow (q \rightarrow r)))$

[8 marks]

- c. Which of the following formulas are valid?
 - 1. $(p \rightarrow \neg p)$
 - 2. $((p \rightarrow q) \rightarrow (q \rightarrow p))$
 - 3. $((p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p))$
 - 4. $(p \to (q \to r)) \to ((p \land q) \to r)$.

[8 marks]

d. Let $\phi = (((p \lor q) \to p) \to (p \land \neg q))$. Construct a complete tableau with ϕ at the root. Use your tableau to determine if ϕ is satisfiable or not. Also, use your tableau to find a formula in disjunctive normal form, equivalent to ϕ .

[13 marks]

[Total = 33 marks]

- 5. This question is about boolean algebra.
 - a. Define the NOR operator, *, for boolean algebra, by drawing a truth table for it.

[2 marks]

- b. Find an expressions equivalent to each of the following using the NOR operator only.
 - 1. -a
 - 2. a.b
 - 3. a + b
 - 4. $a.\bar{b}$

[8 marks]

- c. Write each of the expressions below in conjunctive normal form, i.e. as a product of sums.
 - 1. $a.b + \bar{a}.\bar{b}$.
 - 2. $\bar{a}.b.c + a.b.\bar{c}$

[10 marks]

- d. For each of the following expressions (i) write the expression as a sum of products (disjunctive normal form) (ii) draw a Karnaugh map for the expression and (iii) use your Karnaugh map to simplify the expression, if possible.
 - 1. $(-(\bar{a}.\bar{b}).\bar{b}) + -(\bar{a} + \bar{b}).$
 - 2. $(\bar{a} + \bar{b} + \bar{c}).(a + \bar{b} + \bar{c}).(\bar{a} + b + c).(a + b + c).$

[13 marks]

[Total = 33 marks]

6.	a.	What does it mean when we say that two propositional formulas are semantically
		equivalent to each other? [5 marks]
	b.	Let ϕ be an arbitrary propositional formula using any of the connectives $\neg, \lor, \land, \rightarrow$.
		Explain how it is possible to find a propositional formula ϕ^* , semantically equivalent
		to ϕ , and using only the connectives \neg , \rightarrow .
		[7 marks]
	c.	What does it mean when we say that a proof system \vdash is sound and complete for a
		propositional language?
		[8 marks]
]	Let .	L be the propositional language of all formulas using only the connectives \neg and \rightarrow
i	and l	et L^+ be the propositional language of all formulas using only the connectives \neg , \lor , \land , \rightarrow .
	d.	Let \vdash be a sound a complete proof system for L using axioms A . Give some addi-
		tional axiom schemes that can be added to A in order to make the proof system sound
		and complete for L^+ .
		[11 marks]

END OF PAPER