UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

B.Sc.

.

ES2224: Economics II

COURSE CODE	: ENVS2224
UNIT VALUE	: 0.50
DATE	: 10-MAY-04
TIME	: 10.00
TIME ALLOWED	: 3 Hours

04--C0422-3-60 © 2004 University College London

TURN OVER

ENVS2224 Economics II

Answer FIVE questions. Questions are worth 20 marks each.

1.

9

- (1) What is the Gateway Review Process in public construction procurement?
- (2) How does the Gateway Review work?
- (3) What are the main benefits and costs of this policy?
- (4) Comment on this policy and find ways to improve it.

2.

Suppose you are an in-house project manager for a local council. Now the councillor considers initiating a new school PFI project. Please follow the appraisal and evaluation cycle recommended in the Treasury's Green Book to illustrate (1) the key stages of the process, (2) key activities that should be done at each stage and (3) the way that the quality of appraisal at each stage can be improved.

3. Please comment on the following two statements:

- (1) The great merit of IRR rule is that one does not have to think about what is an appropriate discount rate.
- (2) Your CEO thinks that, now that the bank is willing to lend our company the money that we need for the project at 10%, 10% should be a good indicator for the opportunity cost of capital for this capital.
- (3) The dollar received the day after tomorrow is not necessarily worth less than the dollar received tomorrow.

4.

- (1) Why may the property market be more prone to form a bubble?
- (2) Please illustrate two good ways to measure the intrinsic value of property markets.
- (3) A freehold interest in a city centre shop recently was let at a rent of £10,000 for very long lease subject to annual review. Assume investors' target internal rate of return is 20%, and rental growth is expected to be 10% per annum. Please use the discounted cash flow approach to estimate the market value of this shop (state your assumption, if any)?

TURN OVER

ENVS2224

PROJECT	Cash Flows (1000 £)									
	year 0	year 1	year 2	year 3						
Α	-10	4	3	5						
В	-5	2	3	2						
C	-15	5	2	15						
D	-3,000	2	1	0						

5. A company is making an assessment of the following four projects.

- (a) Given that you wish to use the payback rule with a cutoff period of two years, which projects would you accept?
- (b) If the opportunity cost of capital is 10%, which projects have positive NPVs?
- (c) Payback gives too much weight to cash flows that occur after the cutoff date. True or false. Explain.
- (d) If a firm uses a single cutoff period for all projects, it is likely to accept too many short-lived projects. True or false. Explain
- 6. Alan Bissell, market analyst for City Sound Mart, is analyzing the relation between heavy metal CD sales and the size of the teenage population. He gathers data from six sales districts. Alan's dependent variable is annual heavy metal CD sales (in \$1,000,000's), and his independent variable is teenage population (in 1,000's). Regression analysis of the data yielded the following tables.

	Coefficients	Standard Error	t Statistic	<i>P</i> -value
Intercept	-0.14156	0.292143	-0.48455	0.653331
x	0.105195	0.013231	7.950352	0.001356

Source	df	SS	MS	F
Regression	1	3.550325	3.550325	63.20809
Residual	4	0.224675	0.056169	
Total	5	3.775		

	Se = 0.237
r^2	= 0.940483

- (1) What is Alan's regression model?
- (2) What is Alan's correlation coefficient?.
- (3) What is Alan's sample size ?
- (4) Using $\alpha = 0.05$, should Alan accept H₀: $\beta_1 = 0$?
- (5) For a sales district with 20,000 teenagers, Alan's model predicts annual CD sales of how much?

CONTINUED

ENVS2224

ŝ

•1

7. Can the consumption of water in a city be predicted by temperature? The following data represent a sample of a day's water consumption and the high temperature for that day.

Water use (x)	Temperature(y)
(millions of gallons)	(degrees Fahrenheit)
219	103
56	39
107	77
129	78
68	50
184	96
150	90
112	75

To simplify your calculation, the following summations are given.

$\Sigma x = 608$	$\Sigma x^2 = 49,584$
$\Sigma y = 1,025$	$\Sigma y^2 = 152,711$
$\Sigma xy = 86,006$	

- (1) Develop a least squares regression line to predict the amount of water used in a day in a city by the high temperature for that day.
- (2) What would be the predicted water usage for a temperature of 100° ?
- (3) Evaluate the regression model by calculating s_e , by calculating r^2 , and by testing the slope. Let $\alpha = 0.01$.

8. (1) What are the fundamental problems in the construction industry?(2) What are the solutions to these problems proposed in the Egan report?

END OF PAPER

ENVS2224

in

~

 3

ġ.

$$NPV = C_0 + \sum \frac{C_r}{(1+r)^r}$$

$$PV_t = \frac{C}{r} - (\frac{C}{r}) \frac{1}{(1+r)^r}$$

$$PV_t = (\frac{C}{r}) \frac{1}{(1+r)^r}$$

$$PV = \frac{C_1}{r-g}$$

$$b_1 = \frac{\sum (x-\bar{x})(y-\bar{y})}{\sum (x-\bar{x})^2} = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$b_0 = \bar{y} - b_1 \bar{x} = \frac{\sum y}{n} - b_1 \frac{\sum x}{n}$$

$$s_e = \sqrt{\frac{SSE}{n-2}}$$

$$SSE = \sum (y-\bar{y})^2 = \sum y^2 - b_0 \sum y - b_1 \sum xy$$

$$r^2 = 1 - \frac{SSE}{\sum y^2 - \frac{(\sum y)^2}{n}}$$

$$0 \le r^2 \le 1$$

$$t = \frac{b_1 - \beta_1}{s_b}$$

$$s_e = \sqrt{\frac{SSE}{n-2}}$$

$$s_{b} = \frac{s_{e}}{\sqrt{SS_{xx}}} \qquad s_{e} = \sqrt{\frac{SS}{n-x}}$$
$$SS_{xx} = \sum x^{2} - \frac{(\sum x)^{2}}{n}$$

PRE/ENT VALUE TABLE/

Discount factors: Present value of \$1 to be received after t years = $1/(1 + r)^{t}$.

Interest Rate per Year															
Number of Years	1%	2%	3%	4%	5%	6%	7%	8%	9 %	10%	11%	12%	13%	14%	15%
1	990	980	.971	.962	.952	.943	.935	.926	.917	.909	.901	.893	.885	.877	.870
2	080	961	943	925	907	.890	.873	.857	.842	.826	.812	.797	.783	.769	.756
2	071	942	915	889	.864	.840	.816	.794	.772	.751	.731	.712	.693	.675	.658
<u>л</u>	961	974	888	.855	.823	.792	.763	.735	.708	.683	.659	.636	.613	.592	.572
5	.951	.906	.863	.822	.784	.747	.713	.681	.650	.621	.593	.567	.543	.519	.497
6	942	888	.837	.790	.746	.705	.666	.630	.596	.564	.535	.507	.480	.456	.432
7	933	.871	.813	.760	.711	.665	.623	.583	.547	.513	.482	.452	.425	.400	.376
8	923	853	789	.731	.677	.627	.582	.540	.502	.467	.434	.404	.376	.351	.327
ő	914	837	.766	.703	.645	.592	.544	.500	.460	.424	.391	.361	.333	.308	.284
10	.905	.820	.744	.676	.614	.558	.508	.463	.422	.386	.352	.322	.295	.270	.247
11	896	804	.722	.650	.585	.527	.475	.429	.388	.350	.317	.287	.261	.237	.215
12	887	.788	.701	.625	.557	.497	.444	.397	.356	.319	.286	.257	.231	.208	.187
13	879	.773	.681	.601	.530	.469	.415	.368	.326	.290	.258	.229	.204	.182	.163
14	.870	.758	.661	.577	.505	.442	.388	.340	.299	.263	.232	.205	.181	.160	.141
15	.861	.743	.642	.555	.481	.417	.362	.315	.275	.239	.209	.183	.160	.140	.123
16	853	728	623	.534	.458	.394	.339	.292	.252	.218	.188	.163	.141	.123	.107
17	844	714	605	513	.436	.371	.317	.270	.231	.198	.170	.146	.125	.108	.093
19	836	700	587	.494	.416	.350	.296	.250	.212	.180	.153	.130	.111	.095	.081
10	828	686	570	.475	.396	.331	.277	.232	.194	.164	.138	.116	.098	.083	.070
20	.820	.673	.554	.456	.377	.312	.258	.215	.178	.149	.124	.104	.087	.073	.061
25	780	610	478	.375	.295	.233	.184	.146	.116	.092	.074	.059	.047	.038	.030
30	.742	.552	.412	.308	.231	.174	.131	.099	.075	.057	.044	.033	.026	.020	.015

Note: For example, if the interest rate is 10 percent per year, the present value of \$1 received at year 5 is \$.621.

Annuity table: Present value of \$1 per year for each of t years = $1/r - 1/[r(1 + r)^{t}]$.

La contrato de la con						Interest Rate per Year										
Number of Years	1%	2%	3% :	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	
1.1	.990	.980	.971	.962	.952	.943	.935	.926	.917		.901	.893	885	.877	.870	
2.	1.970	1.942	1.913	1.886	1.859	1.833	1.808	1.783	1.759	1.736	1.713	1.690	1.668	1.647	1.626	
3	2.941	2.884	2.829	2.775	2.723	2.673	2.624	2.577	2.531	2.487	2.444	2.402	2.361	2.322	2.283	
4	3.902	3.808	3.717	3.630	3.546	3.465	3.387	3.312	3.240	3.170	3.102	3.037	2.974	2.914	2.855	
5	4.853	4.713	4,580	4.452	4.329	4.212	4.100	3.993	3.890	3,791	3.696	3.605	3.517	3.433	3.352	
6	5.795	5.601	5.417	5.242	5.076	4.917	4.767	4.623	4.486	4.355	4.231	4.111	3.998	3.889	3.784	
7	6.728	6.472	6.230	6.002	5.786	5.582	5.389	5.206	5.033	4.868	4.712	4.564	4.423	4.288	4.160	
- 8	7,652	7.325	7.020	6.733	6.463	6.210	5.971	5.747	5.535	5.335	5.146	4.968	4.799	4.639	4.487	
. 9	8.566	8.162	7.786	7,435	7.108	6.802	6.515	6.247	5.995	5.759	5.537	5.328	5,132	4.946	4.772	
10	9.471	8.983	8,530	8.111	7,722	7.360	7.024	6.710	6.418	6.145	5.889	5.650	5.426	5.216	5.019	
11	10.37	9.787	9.253	8.760	8.306	7.887	7.499	7.139	6.805	6.495	6.207	5.938	5.687	5.453	5.234	
12	11.26	10.58	9.954	9.385	8.863	8.384	7.943	7.536	7.161	6.814	6.492	6.194	5.918	5.660	5.421	
13	12.13	11.35	10.63	9.986	9.394	8.853	8.358	7.904	7.487	7.103	6.750	6.424	6.122	5.842	5.583	
, 14 an	13.00	12.11	11.30	10.56	9.899	9.295	8.745	8.244	7.786	7.367	6.982	6.628	6.302	6.002	5.724	
15 .	13.87	12.85	11.94	11.12	10.38	9.712	9.108	8.559	8.061	7.606	7.191	6.811	6,462	6.142	5.847	
16	14.72	13.58	12.56	11.65	10.84	10.11	9.447	8.851	8.313	7.824	7.379	6.974	6.604	6.265	5.954	
17	15.56	14.29	13.17	12.17	11.27	10.48	9.763	9.122	8.544	8.022	7.549	7.120	6.729	6.373	6.047	
18	16.40	14.99	13.75	12.66	11.69	10.83	10.06	9.372	8.756	8.201	7.702	7.250	6.840	6.467	6.128	
19	17.23	15.68	14.32	13.13	12.09	11.16	10.34	9.604	8.950	8.365	7.839	7.366	6.938	6.550	6.198	
20	18.05	16.35	14.88	13.59	12.46	. 11.47	10.59	9.818	9.129	8.514	7.963	7.469	7.025	6.623	6.259	
25	22.02	19.52	17.41	⊴_15.62 ⊃	14.09	12.78	11.65	10.67	9.823	9.077	8.422	7.843	7,330	6.873	6.464	
30	25.81	22.40	19.60	17.29	15,37	13.76	12,41	11.26	10.27	9.427	8.694	8.055	7.496	7.003	6.566	

13-16

1.32438

Ş.9.

×.

44

Note: For example, if the interest rate is 10 percent per year, the present value of \$1 received in each of the next 5 years is \$3.791.

n de Nordel

1

÷...

žę y

Critical Values from the t Distribution

Values of α for one-tailed test and $\alpha/2$ for two-tailed test											
df	t.100	t.050	[‡] .025	t.010	t.005	t.001					
1	3.078	6.314	12.706	31.821	63.656	318.289					
2	1.886	2.920	4.303	6.965	9.925	22.328					
3	1.638	2.353	3.182	4.541	5.841	10.214					
4	1.533	2.132	2.776	3.747	4.604	7.173					
5	1.476	2.015	2.571	3.365	4.032	5.894					
6	1.440	1.943	2.447	3.143	3.707	5.208					
7	1.415	1.895	2.365	2.998	3.499	4.785					
8	1.397	1.860	2.306	2.896	3.355	4.501					
9	1.383	1.833	2.262	2.821	3.250	4.297					
10	1.372	1.812	2.228	2.764	3.169	4.144					
11	1.363	1.796	2.201	2.718	3.106	4.025					
12	1.356	1.782	- 2.179	2.681	3.055	3.930					
13	1.350	1.771	2.160	2.650	3.012	3.852					
14	1.345	1.761	2.145	2.624	2.977	3.787					
15	1.341	1.753	2.131	2.602	2.947	3.733					
16	1.337	1.746	2.120	2.583	2.921	3.686					
17	1.333	1.740	2.110	2.567	2.898	3.640					
18	1.330	1.734	2.101	2.552	2.878	3.610					
19	1.328	1.729	2.093	2.539	2.861	3.579					
20	1.325	1.725	2.086	2.528	2.845	3.55					
21	1.323	1.721	2.080	2.518	2.831	3.52					
22	1.321	1.717	2.074	2.508	2.819	3.50					
23	1.319	1.714	2.069	2.500	2.807	3.48					
24	1.318	1.711	2.064	2.492	2.797	3.46					
25	1.316	1.708	2.060	2.485	2.787	3.45					
26	1.315	1.706	2.056	2.479	2.779	3.43					
27	1.314	1.703	2.052	2.473	2.771	3.42					
28	1.313	1.701	2.048	2.467	2.763	3.40					
29	1.311	1.699	2.045	2.462	2.756	3.39					
30	1.310	1.697	2.042	2.457	2.750	3.38					
40	1.303	1.684	2.021	2.423	2.704	3.30					
50	1.299	1.676	2.009	2.403	2.678	3.26					
60	1.296	1.671	2.000	2.390	2.660	3.23					
70	1.294	1.667	1.994	2.381	2.648	3.21					
80	1.292	1.664	1.990	2.374	2.639	3.19					
90	1.291	1.662	1.987	2.368	2.632	3.18					
100	1.290	1.660	1.984	2.364	2.626	3.17					
150	1.287	1.655	1.976	2.351	2.609	3.14					
200	1.286	1.653	1.972	2.345	2.601	3.13					
<u></u> .	1.282	1.645	1.960	2.326	2.576	3.09					

Areas of the Standard Normal Distribution

The entries in this table are the probabilities that a standard normal random variable is between 0 and Z (the shaded area).

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	1985	2019	2054	2000	2122	3153	2100	
0.6	.2257	.2291	.2324	2357	2389	.2000	.2123	.2157	.2190	.2224
0.7	.2580	.2611	.2642	2673	2704	.2422	.2434	.2400	.2017	.2549
0.8	.2881	.2910	.2939	.2967	2995	3023	3051	3079	.2025	.2852
0.9	.3159	.3186	.3212	.3238	.3264	3789	3315	3340	3365	.3133
1.0	2412	2420	2464	2.0-		.5207	.5515	.5540	.5505	.5505
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3043	.3005	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3049	.2809	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.5	4197	.4049	.4000	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.7	.4172	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
-1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	4854	4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	4941	4943	1015	1014	40.40	4040	4051	4050
2.6	.4953	.4955	.4956	4957	4950	4960	.4740	.4949	.4951	.4952
2.7	.4965	.4966	.4967	.4968	4969	.4900 4970	.4701	.4702	.4903	.4904
2.8	.4974	.4975	.4976	.4977	4977	4978	.4971 4070	.4972	.4975	.49/4
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	4986	.4701
3.0	4987	1087	4097	4099	1000	(222				
3.1	4990	.4707	.4707	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.2	4993	4003	.4771	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.3	.4995	4995	.4774 4005	.4774	.4994	.4994	.4994	.4995	.4995	.4995
3.4	.4997	4997	.4997	.4770 4007	.4770 1007	.4770	.4996	.4996	.4996	.4997
			,#/ <i>71</i>	.4771	.477/	.477/	.4997	.4997	.4997	.4998
3.5	.4998									
4.0	.49997									
4.5	.499997									
5.0	.4999997									
0.0	.4999999999									