UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

Eng.D. M.Sc.

ESGV1: Principles of Virtual Environments

COURSE CODE
: ENVSGV01

DATE
: 03-MAY-05

TIME
: 10.00

TIME ALLOWED
: 3 Hours

ESGV1: PRINCIPLES OF VIRTUAL ENVIRONMENTS (3 hours)

Candidates must answer ALL FOUR questions from PART A and THREE questions from PART B

PART A

Candidates must answer ALL FOUR questions from PART A
1.
a) Write TWO computer programs to draw 10 parallel vertical lines on a computer screen in pseudo-code. In one, demonstrate how the function translate (x, y), which translates the current coordinate system by (x y), can be used to achieve the result; in the other, demonstrate that the function translate (x, y) is not necessary.

In both programs, assume you have a function line (x, y, a, b) which draws a line from location $\{x, y\}$ to location $\{x+a, y+b\}$ in the current coordinate system.
(4 marks)
b) Now write a computer programs to draw a 10×10 grid of vertical lines on a computer screen, which demonstrates the use of functions called translate(x, y), push () and pop(). (4 marks)
c) Explain the logic of your placement of the push() and pop() functions in your solution to part (b).
2. A robot is located on a 2 D plane at $\{3,4\}$ and facing in the direction (01).
a) Write down a matrix which will rotate the robot 20° clockwise.
b) Apply the matrix to the robot's direction vector (01).
c) Why is a 3×3 matrix required if we would like to translate the robot as well as rotate it? (2 marks)
d) Write down a matrix to translate the robot by $\left(\begin{array}{ll}0 & 1)\end{array}\right.$ from its current location (3 marks)
e) Now calculate a matrix which will rotate the robot 20° clockwise before moving it 1 unit in the direction it is facing.
(5 marks)
f) Transform the robot's location $\{3,4\}$ using the matrix you calculated in part (e).
3. A boid is located at $\{5,5,5\}$ travelling in the direction (001). You would like to turn the boid to face the centre of its group, located at $\{8,9,5\}$ using the function 'rotate $(x, y, z, a n g l e)$ '. Proceed as follows:
a) Find the direction vector from the boid $\{5,5,5\}$ to the centre of the group $\{8,9,5\}$.
(3 marks)
b) Now, find the angle between the boid's current heading (0001) and the direction to the centre of the group (your answer to part (a)).
c) Now, use a cross product to find the axis between the boid's current heading (001) and the direction to the centre of the group (your answer to part (a)).
4.
a) Write a program in pseudo-code to draw a parametric representation of the curve $y=x^{2}$. Assume that you have a function point (x, y) which draws a point at the location $\{x, y\}$.
(4 marks)
b) Describe the purpose of a blending function in a Bezier curve.
c) What advantages does a generalized NURBS curve have over a Bezier curve?

Total 52 marks for Part A

PART B

Candidates must answer THREE questions from PART B
5. How can presence in virtual environments be measured? Include examples of environments with different levels of presence in your answer.
(16 marks) -
6. How can interactions in virtual space be measured using space syntax? Does this tell us anything about the design of virtual space?
7. Explain what spatialised audio is and how it works.
8. What is a Collaborative Virtual Environment? What is Augmented Reality? How can both be combined to contribute to the design process?
(16 marks)
9. How do traditional rules of narrative change when they are applied to virtual environments?
(16 marks)
10. Describe the factors you need to consider in order to design a good HCI (Human Computer Interaction) experiment.

Total 48 marks for Part B

