UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Sc.(Econ)M.Sci.

Ł

1

Philosophy B1: Logic

COURSE CODE	:	PHILB001
UNIT VALUE	:	1.00
DATE	:	03-MAY-06
ТІМЕ	:	10.00
TIME ALLOWED	:	3 Hours

PHILOSOPHY B1: LOGIC

Answer all questions.

ł

ł

All questions have equal value.

PART A. BASIC LOGICAL NOTIONS

- 1. When is a set of propositions logically consistent?
- 2. If two propositions are logically indeterminate, can you conclude from this that they are logically equivalent? Can you conclude that they are not logically equivalent? Explain your answer.
- 3. Can a logically valid argument have a logically inconsistent set of premises?

PART B. SYMBOLIZATION IN SL

Symbolise in SL using the following key:

J: John will go to the party

M: Mary will go to the party

A: Ann will go to the party

- 4. If John goes to the party, neither Mary nor Ann will go.
- 5. Mary will go to the party only if Ann goes.
- 6. John and Mary won't both go to the party.

PART C. SYNTAX AND SEMANTICS OF SL

- 7. Show that the string of symbols $(A \supset B)$ & ~C is a sentence of SL.
- 8. If we symbolise two logically equivalent propositions in SL, will their symbolizations always be truth-functionally equivalent? Justify your answer.
- 9. Use the truth-table method to determine whether the argument

 $(A \supset B) \supset C$

 $A \supset (\sim B \lor C)$

is truth-functionally valid. Explain how you obtain your answer.

PART D. SD DERIVATIONS

10. Derive in SD the conclusion $\sim B$ from the premises $\sim A \supset (\sim A \supset (B \supset A))$ and $\sim A$.

11. Derive in SD the conclusion B from the premises $A \vee B$ and $\sim A \& C$.

12. Derive in SD the conclusion $(A \supset \sim B) \supset (B \supset (\sim A \lor \sim C))$ from no premises.

PART E. SYMBOLIZATION IN PLE

Symbolize in PLE using the following key:

U.D.: People Tx: x is tall Lxy: x likes y f(x): x's father

TURN OVER

- 13. Everyone likes at least one tall person.
- 14. At least one tall person likes his/her father.
- 15. There are at most two tall persons.
- PART F. SYNTAX AND SEMANTICS OF PLE
 - 16. Explain informally the definition of the denotation of a term in an interpretation for a variable assignment.
 - 17. Find an interpretation in which the sentence $(\forall x)(\forall y)(Rxy \supset Rxf(y))$ is true and one in which it is false.
 - 18. If the symbolisation of a proposition into SL is truth-functionally true, does it follow that its symbolisation into PLE is quantificationally true? Explain your answer.

PART G. PD DERIVATIONS

- 19. Derive in PD the conclusion $(\forall x)(Ax \supset Cx)$ from the premises $(\forall x)(Ax \supset Bx)$ and $(\forall x)(\sim Cx \supset \sim Bx)$
- 20. Derive in PD the conclusion $(\forall x)$ ~Ax from the premise ~ $(\exists x)$ Ax.
- 21. Derive in PD the conclusion $(\forall x)(\exists y)(Ay \supset Ax)$ from no premises.

END OF PAPER

1