22/07(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

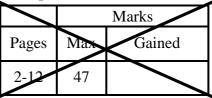
FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 18, 21 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
13	5			
14	6			
15	7			
16	4			
17	6			
19	6			
20	4			
22	6			
23	9			
Total	53			
Check	Total			

•	Briefly describe two factors that determin will lead to a chemical reaction.	e whether a collision between two molecules	Marks 5
	Briefly describe the relationship between energy for the reaction.	the rate of a reaction and the activation	
	The rate constant for the decomposition of 25 °C to 3.83×10^{-3} s ⁻¹ at 45 °C. Calcula	of N ₂ O ₅ increases from $1.52 \times 10^{-5} \text{ s}^{-1}$ at the activation energy for the reaction.	
		$E_{\rm a} =$	

• Using equations, explain how a buffer fur	nctions.	Marks 6
Why is the buffer most effective when pF	$\mathbf{H} = \mathbf{p}K_{\mathbf{a}}?$	
Why is it not possible to make a buffer us	sing a strong acid and its conjugate base?	
What ratio of concentrations of acetic aci prepare a buffer with pH = 5.00? The p K_a	d to sodium acetate would you require to a of acetic acid is 4.76.	
	ANSWER:	

•

		22,07 (u)
Consider the compound with formula [Co	$Cl_2(NH_3)_4]Br\cdot 2H_2O$	Marks 3
Write the formula of the complex ion.		
Write the symbols of the ligand donor atom	ms.	
What is the d electron configuration of the	e metal ion in this complex?	
Stalactites and stalagmites can be found in chemical equations as part of your answer caves have been formed.	in limestone caves near Sydney. Using er, explain how stalactites, stalagmites and the	4
THE REMAINDER OF THIS PAGE	E IS FOR ROUGH WORKING ONLY	J

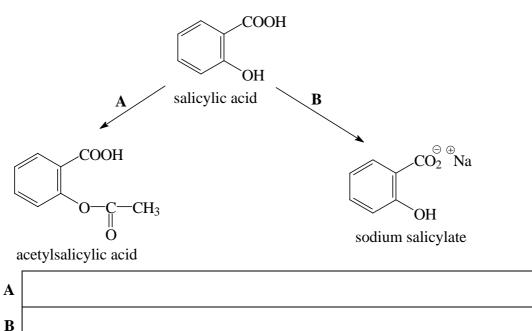
CHEM1102	2004-J-5	June 2004	22/07(a)
• A phase diagram of a pure compound has a triple point at 20 °C and 0.25 atm, a normal melting point at 25 °C, and a normal boiling point at 87 °C.			
Describe what happed constant temperature		ed from 2 atm to 0.05 atm at a	
Describe what happe constant pressure of	ens when the temperature is rai 1.25 atm?	ised from 13 °C to 87 °C at a	
Which is more dense	e, the solid or the liquid? Expl	ain your reasoning.	
THE REMAINDE	ER OF THIS PAGE IS FOR	ROUGH WORKING ONLY	

CHEM1102 20)04-J-6	June 2004	22/07(a)
• Magnesium hydroxide, $Mg(OH)_2$, is stomach. Calculate the pH of a sol The solubility product constant, K_{sp}	ution that is in ec	uilibrium with Mg(OH) ₂ .	Marks 6
	ANSWI	ER:	
Determine whether 2.0 g of Mg(OF pH of 7.00.	H) ₂ will dissolve	in 1.0 L of a solution buffered to a	a
	ANSWE	ER: YES / NO	

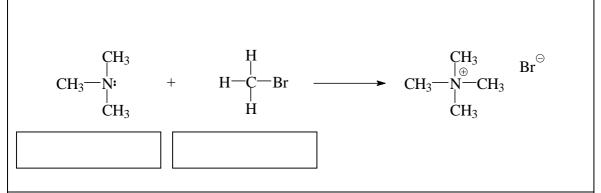
Marks • Draw the constitutional structure of the major organic product formed in the following 6 reactions. 1. CH₃CH₂MgBr 2. H^{\oplus}/H_2O NaCN Cl HCl Cl $\begin{array}{c} N - CH - CO_2^{\ominus} & H_2O / H^{\oplus}(6 M) \\ H & CH_2CONH_2 \end{array}$ ⊕ H₃N-H CH₂CONH₂ ĊH₃

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Give the constitutional formulas of the compounds $\mathbf{H} - \mathbf{K}$. Relevant spectral data are 4 given in the table below. $\operatorname{Cr_2O_7}^{2\ominus}/\operatorname{H^{\oplus}}$ Н K ЮH $\operatorname{Cr_2O_7}^{2 \ominus}/\operatorname{H}^{\oplus}$ conc. H₂SO₄ dilute H₂SO₄ J Ι 1-propanol Η Ι J Κ Molecular ion m/z =60 74 42 60 58 IR ~ 3500 cm^{-1} \checkmark \checkmark \checkmark Х Х ~ 1700 cm⁻¹ \checkmark ✓ Х Х Х ¹³C nmr: no. of signals 3 3 3 2 2 Relative sizes of 1:1:1 1:1:1 1:1:1 2:1 2:1 ¹³C nmr signals


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks


2

4

• Give the reagents **A** and **B** used for the following reactions.

Draw in appropriate partial charges (δ⊕ and δ⊖) and curly arrows to show the mechanism of the following reaction. Classify the starting materials as nucleophile, electrophile or neither, indicating your choice in the appropriate box.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Draw the repeating unit of the polymer formed in the following reactions. 6 O С Cl \mathbb{C} H_2N_{\sim} NH₂ HO Cl Considering the polymers formed above, which: (i) would be more stable towards acid-catalysed hydrolysis, and (ii) would have a greater tensile strength? Give reasons for your answers. 3 • Briefly describe what is meant by the primary, secondary and tertiary structure of a protein.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions			
Fraction	Prefix	Symbol	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10^{-9}	nano	n	
10^{-12}	pico	р	

Decimal multiples

Prefix	Symbol
kilo	k
mega	М
giga	G
	kilo mega

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°		
Reaction	E° / V	
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23	
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92	
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80	
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77	
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34	
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15	
$2H^{\scriptscriptstyle +}(aq) \ + \ 2e^{\scriptscriptstyle -} \ \rightarrow \ H_2(g)$	0 (by definition)	
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04	
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14	
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24	
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44	
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74	
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76	
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83	
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89	
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68	
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36	
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71	

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry

Gas Laws

Radioactivity

$$PV = nRT$$

 $(P + n^2 a/V^2)(V - nb) = nRT$

Acids and Bases

 $E = hv = hc/\lambda$

 $4.5k_{\rm B}T = hc/\lambda$

 $\lambda = h/mu$

$pK_{\rm w} = pH + pOH = 14.00$	$A = \lambda N$
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$\ln(N_0/N_t) = \lambda t$
$pH = pK_a + \log\{[A^-] / [HA]\}$	¹⁴ C age = 8033 ln(A_0/A_t)

Colligative properties

F_{2}/RT $\pi = cRT$ $\mathbf{p} = k\mathbf{c}$ $\Delta T_{\rm f} = K_{\rm f} m$ $\Delta T_{\rm b} = K_{\rm b}m$

Electrochemistry

 $\Delta G^{\circ} = -nFE^{\circ}$ Moles of $e^- = It/F$ $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$ $E^{\circ} = (RT/nF) \times 2.303 \log K$ $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Kinetics

$$k = Ae^{-Ea/RT}$$

$$t_{1/2} = \ln 2/k$$

$$\ln[A] = \ln[A]_0 - kt$$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
$$\Delta G^{\circ} = -RT \ln K$$
$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

Mathematics

If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 potassium	20 calcium	21 scandium	22 TITANIUM	23 vanadium	24 сняоміим	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 Arsenic	34 selenium	35 bromine	36 krypton
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96 39	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80 54
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43 technetium	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 iodine	D4 XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 caesium	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 озміим	77 IRIDIUM	78 platinum	79 gold	80 mercury	81 thallium	82 LEAD	83 bismuth	84 polonium	85 astatine	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORDI	105 DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
												n					- 1
	57			59 RASEODYMIUM	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadoliniu	м текві		66 PROSIUM	67 HOLMIUM	68 Erbium	69 THULIUM	70 ytterbium	71
LANTHANIDI	ES LANTHA		им р Се	Pr	NEODYMIUM Nd	PROMETHIUM Pm	SAMARIUM Sm	EUROPIUM	GADOLINIU GADOLINIU	M TERBI		Dy	HOLMIUM	Erbium	THULIUM Tm	YTTERBIUM YD	LUTETIOM
	138.			140.91	144.24	[144.9]	150.4	151.96	157.2				64.93	167.26	168.93	173.04	174.97
	89			91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDES	ACTINI		пим р h	rotactinium Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am		BERKEL		IFORNIUM E	NSTEINIUM Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM NO	LAWRENCIUM
	[227			[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1				252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

22/07(b)