Thy Atnitrexsity of \mathbb{S} gudney

CHEMISTRY 1B - CHEM1102

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2004
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages $18,21 \& 24$ are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
13	5			
14	6			
15	7			
16	4			
17	6			
19	6			
20	4			
22	6			
23	9			
Total	53			
Check Total				

- Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.
\square
Briefly describe the relationship between the rate of a reaction and the activation energy for the reaction.
\square
The rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ increases from $1.52 \times 10^{-5} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ to $3.83 \times 10^{-3} \mathrm{~s}^{-1}$ at $45^{\circ} \mathrm{C}$. Calculate the activation energy for the reaction.
- Using equations, explain how a buffer functions.
\square
Why is the buffer most effective when $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$?
\square
Why is it not possible to make a buffer using a strong acid and its conjugate base?
\square
What ratio of concentrations of acetic acid to sodium acetate would you require to prepare a buffer with $\mathrm{pH}=5.00$? The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid is 4.76.

ANSWER:

- Consider the compound with formula $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Write the formula of the complex ion. \square
Write the symbols of the ligand donor atoms.

What is the d electron configuration of the metal ion in this complex?

- Stalactites and stalagmites can be found in limestone caves near Sydney. Using chemical equations as part of your answer, explain how stalactites, stalagmites and the caves have been formed.
- A phase diagram of a pure compound has a triple point at $20^{\circ} \mathrm{C}$ and 0.25 atm , a normal melting point at $25^{\circ} \mathrm{C}$, and a normal boiling point at $87^{\circ} \mathrm{C}$.
Describe what happens when the pressure is reduced from 2 atm to 0.05 atm at a constant temperature of $15^{\circ} \mathrm{C}$?

Describe what happens when the temperature is raised from $13^{\circ} \mathrm{C}$ to $87^{\circ} \mathrm{C}$ at a constant pressure of 1.25 atm ?

Which is more dense, the solid or the liquid? Explain your reasoning.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, is used as treatment for excess acidity in the stomach. Calculate the pH of a solution that is in equilibrium with $\mathrm{Mg}(\mathrm{OH})_{2}$. The solubility product constant, $K_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $7.1 \times 10^{-12} \mathrm{M}^{2}$.
\square
Determine whether 2.0 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ will dissolve in 1.0 L of a solution buffered to a pH of 7.00.

ANSWER:

- Draw the constitutional structure of the major organic product formed in the following reactions.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Give the constitutional formulas of the compounds $\mathbf{H}-\mathbf{K}$. Relevant spectral data are given in the table below.

		dilute		$\rho / \mathrm{H}^{\oplus}$	
	1-propanol	H	I	J	K
Molecular ion $m / z=$	60	74	42	60	58
IR $\sim 3500 \mathrm{~cm}^{-1}$	\checkmark	\checkmark	X	\checkmark	X
$\sim 1700 \mathrm{~cm}^{-1}$	X	\checkmark	X	X	\checkmark
${ }^{13} \mathrm{C}$ nmr: no. of signals	3	3	3	2	2
Relative sizes of ${ }^{13} \mathrm{C}$ nmr signals	1:1:1	1:1:1	1:1:1	2:1	2:1

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Give the reagents \mathbf{A} and \mathbf{B} used for the following reactions.

acetylsalicylic acid
A \qquad
- Draw in appropriate partial charges ($\delta \oplus$ and $\delta \ominus$) and curly arrows to show the mechanism of the following reaction. Classify the starting materials as nucleophile, electrophile or neither, indicating your choice in the appropriate box.

\square
\square

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Draw the repeating unit of the polymer formed in the following reactions.

\qquad

Considering the polymers formed above, which:
(i) would be more stable towards acid-catalysed hydrolysis, and
(ii) would have a greater tensile strength? Give reasons for your answers.
\square

- Briefly describe what is meant by the primary, secondary and tertiary structure of a protein.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol 10^{3} kilo k $10^{6} \quad$ mega M
10^{9} giga G

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$
$4.5 k_{\mathrm{B}} T=h c / \lambda$

Acids and Bases

$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$

Colligative properties

$\pi=\mathrm{cRT}$
$\mathrm{p}=\mathrm{kc}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Electrochemistry

$\Delta G^{\circ}=-n F E^{\circ}$
Moles of $e^{-}=I t / F$
$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E^{\circ}=(R T / n F) \times 2.303 \log K$
$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

Gas Laws

$P V=n R T$
$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$

Radioactivity

$A=\lambda N$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$

Kinetics

$k=A \mathrm{e}^{-E a / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t$
$\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$

Thermodynamics \& Equilibrium

$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$

Mathematics

If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\ln x=2.303 \log x$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$\begin{gathered} 1 \\ \text { нypogen } \\ \mathbf{H} \\ 1.008 \\ \hline \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { нецшм } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
	$\begin{gathered} 3 \\ \text { цтиим } \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} \hline 4 \\ \text { вегмимм } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} \hline 5 \\ \substack{\text { Borov } \\ \mathbf{B} \\ 10.81} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { саввом } \\ \mathbf{C} \\ 12.01 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \begin{array}{c} 7 \\ \text { niroces } \\ \mathbf{N} \\ 14.01 \end{array} \end{gathered}$	$\begin{gathered} \hline 8 \\ \text { oxven } \\ \mathbf{O} \\ 16.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { fivorne } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { neon } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
	$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathbf{N a} \\ 22.99 \\ \hline \end{gathered}$	12 macnesum $\mathbf{M g}$ 24.31											$\begin{gathered} 13 \\ \text { А九шмпим } \\ \text { Al } \\ 26.98 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ \text { sulcon } \\ \mathbf{S i} \\ 28.09 \\ \hline \end{gathered}$	15 phosphorus \mathbf{P} 30.97 33	$\begin{gathered} 16 \\ \substack{\text { suruve } \\ \mathbf{S} \\ 32.07 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} 17 \\ \text { chlorne } \\ \mathbf{C l} \\ 35.45 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \begin{array}{c} \text { авсом } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 \end{gathered}$
	$\begin{gathered} \hline 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \text { саломм } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scanoum } \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { тталим } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vaxamum } \\ \mathbf{V} \\ 50.94} \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { снкомим } \\ \mathbf{C r} \\ 52.00 \end{array} \end{gathered}$	25 Mancanser $\mathbf{M n}$ 54.94	$\begin{gathered} \hline 26 \\ \text { irow } \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { мсккц } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { coprer } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zanc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { Gaиним } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { севмамтм } \\ \text { Ge } \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 \\ \text { ARsenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { shentum } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { BRoмñe } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { квутоо } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
	$\begin{gathered} \hline \begin{array}{c} 37 \\ \text { Rubrum } \\ \mathbf{R b} \\ 85.47 \end{array} \end{gathered}$	$\begin{gathered} \hline 38 \\ \hline \text { strontuм } \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 39 \\ \text { yrtrum } \\ \mathbf{Y} \\ 88.91 \end{array} \end{gathered}$	$\begin{gathered} \hline 40 \\ \text { zriconvu } \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { мовим } \\ \mathbf{N b} \\ 92.91 \end{gathered}$	42 мооввепим $\mathbf{M o}$ 95.94	$\begin{gathered} \hline 43 \\ \text { теснитим } \\ \mathbf{T c} \\ {[98.91]} \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Rutнемим } \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rногтм } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \begin{array}{c} \text { рацапим } \\ \text { Pd } \\ 106.4 \end{array} \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { сармим } \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мnoum } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { Tiv } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { Anтімхм } \\ \text { Sb } \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \begin{array}{c} \text { тецииим } \\ \text { Te } \\ 127.60 \end{array} \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { Loone } \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \hline \text { xexow } \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\frac{\stackrel{N}{B}}{\underset{i}{\mid}}$	$\begin{gathered} 55 \\ \text { сакsum } \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} \hline 56 \\ \substack{\text { вадтым } \\ \mathbf{B a} \\ 137.34} \end{gathered}$	57－71	$\begin{gathered} 72 \\ \text { нанлим } \\ \mathbf{H f} \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \text { талтаим } \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} \hline 74 \\ \text { Tungsten } \\ \mathbf{W} \\ 183.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { мннамим } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osnum } \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { rinoum } \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} \hline 78 \\ \text { рцатлмм } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { could } \\ \text { Au } \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { мвRCur } \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тнацим } \\ \mathbf{T l} \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LEAD } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { вівмитн } \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { poonvem } \\ \text { Po } \\ {[210.0]} \end{gathered}$	$\begin{gathered} 85 \\ \begin{array}{c} \text { Алтатіме } \\ \text { At } \\ {[210.0]} \end{array} \end{gathered}$	$\begin{gathered} 86 \\ \text { Renoon } \\ \mathbf{R n} \\ {[222.0]} \end{gathered}$
	$\begin{gathered} 87 \\ \begin{array}{c} 8 \text { rRancum } \\ \text { Fr } \\ {[223.0]} \end{array} \end{gathered}$	$\begin{gathered} 88 \\ \begin{array}{c} 8 \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \end{array} \\ \hline \end{gathered}$	89－103	$\begin{array}{c\|} \hline \text { R"ниегеовоим } \\ \mathbf{R f} \\ {[261]} \\ \hline \end{array}$	$\begin{gathered} 105 \\ \text { ривлим } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sевованм } \\ \mathbf{S g} \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { вонким } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { Hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} 109 \\ \text { мептйим } \\ \text { Mt } \\ {[266]} \\ \hline \end{gathered}$									

