The Henitrexity of Sudneg

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002
SECOND SEMESTER EXAMINATION

CONFIDENTIAL

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages $14,16,20$ and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			Marker
	Max	Gained		
10	8			
11	6			
12	4			
13	6			
15	8			
17	8			
18	6			
19	6			
21	5			
22	7			
23	4			
Total	68			

- The nickel(II) ion exists as the $\left[\mathrm{Ni}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ complex ion in aqueous solution. Define

What is the name of this complex ion?
\square
Why is such a solution acidic?
\square
Write a balanced equation for the corresponding reaction.
\square

- You have completed a number of titrations during your laboratory work. What is the difference between the 'end point' and the 'equivalence point' in a titration?

How do you need to consider that distinction when you chose an indicator for a particular titration?

- Examine the following pressure/temperature phase diagram for a one component system.

Which phase exists in the fields labelled \mathbf{A}, \mathbf{B} and \mathbf{C} ?

A:	B:	C:

Explain your assignment of these phases.
\square
What do the lines in the diagram represent?
\square
What happens when you move across a line either by changing temperature or pressure?
\square
For a compound with this phase diagram, would the solid be denser than the liquid or vice versa? Explain your answer.

- The data given in the table below were obtained for the reaction between nitric oxide and chlorine at 1400 K .

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g})
$$

Experiment number	INITIAL [Cl 2$]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	INITIAL [NO] $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	INITIAL REACTION RATE $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.10	0.10	0.18
2	0.20	0.10	0.36
3	0.10	0.20	0.72

Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Calculate the pH of a 0.020 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.

- Calculate the pH of a 0.150 M solution of HNO_{2}. The $\mathrm{p} K_{\mathrm{a}}$ of HNO_{2} is 3.15 .

- Calculate the pH of a solution that is 0.080 M in acetic acid and 0.160 M in sodium acetate. The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid is 4.76 .
- Hydrogen bonding is important for the physical properties of water and consequently the very existence of life on earth. What effect does the formation of hydrogen bonding have on the density of solid water (ice) compared to liquid water. Explain.
\qquad
Predict the physical form of water under ambient conditions if no hydrogen bonds existed. Explain that prediction.
- BaSO_{4} is used as a contrast agent for X-ray images of intestines. What is the solubility product constant, $K_{\text {sp }}$, for BaSO_{4}, given that a maximum of $1.2 \times 10^{-3} \mathrm{~g}$ dissolves in 500.0 mL of water.
\square
Answer:
Ba^{2+} ions are toxic. Comment on the suitability of BaSO_{4} as a contrast agent.

What advantage would there be in administering BaSO_{4} as a slurry which also contains $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?

- Give the name of the starting material where indicated and the constitutional formula of the major organic product formed in each of the following reactions.
Clict
- Classify the starting materials for each of the following reactions as nucleophile and electrophile in the boxes provided and draw the structure of the product.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Consider the following reaction sequence.

Reagent \mathbf{F}

Give the reagents \mathbf{C}, \mathbf{D} and \mathbf{F} and draw the structures of the major organic products,
\mathbf{A}, \mathbf{B} and \mathbf{E}, formed in these reactions.

A	D
B	E
C	F

- Show clearly the reagents you would use to carry out the following chemical conversion. Two steps are required. Give the structure of the intermediate compound.

How could you distinguish between the starting material and the product by ${ }^{13} \mathrm{C}$ NMR spectroscopy?

- Bupivacaine is the active molecule in some local anaesthetics. Of the two enantiomers, the one shown below (\mathbf{X}) is the more effective.

(X)

What is the molecular formula of (X)?

Calculate the m / z value for the major peak you would expect to see for the molecular ion in the high resolution mass spectrum.
[Atomic masses: ${ }^{1} \mathrm{H}=1.0078 ;{ }^{12} \mathrm{C}=12.0000 ;{ }^{16} \mathrm{O}=15.9949 ;{ }^{14} \mathrm{~N}=14.0031$]

Answer:

List the substituents attached to the stereogenic centre in descending order of priority according to the sequence rule.

highest priority

lowest priority

What is the absolute stereochemistry of (X)? Write (R) or (S). Name the functional groups present in (X).

- Threonine (\mathbf{Y}) is an amino acid. On the structure of (\mathbf{Y}) below, identify all stereocentres in threonine with an asterisk (*).
 (Y)

How many possible stereoisomers of threonine are there?

Give the structures of the products obtained when threonine is treated with the following reagents.

1 M HCl	1 M NaOH

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions
Fraction Prefix Symbol

10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.10
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s})$	+0.92
$\operatorname{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \operatorname{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Useful formulas

Thermodynamics \& Equilibrium	Electrochemistry
$\Delta U=q+w=q-p \Delta V$	$\Delta G^{\circ}=-n F E^{\circ}$
$\Delta_{\text {universe }} S=\Delta_{\text {sys }} S-\frac{\Delta_{\text {sys }} H}{T_{\text {sys }}}$	$\text { Moles of } e^{-}=I t / F$
	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta G=\Delta G^{\circ}+R T \ln Q$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$\Delta G^{\circ}=-R T \ln K$	$=(R T / n F) \times \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Colligative properties	Quantum Chemistry
$\pi=\mathrm{cRT}$	$E=h \nu=h c / \lambda$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$\lambda=h / m v$
$\mathrm{p}=k \mathrm{c}$	$4.5 k_{\mathrm{B}} T=h \mathrm{c} / \lambda$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} \mathrm{m}$	$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$
	$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Radioactivity	Kinetics
$t_{1 / 2}=\ln 2 / \lambda$	$t_{1 / 2}=\ln 2 / k$
$A=\lambda N$	$k=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Miscellaneous	Mathematics
$A=-\log _{10} \frac{I}{I_{0}}$	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}}$	

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} \hline \begin{array}{c} 1 \\ \text { Hyonocev } \\ \mathbf{H} \\ 1.008 \end{array} \end{gathered}$																	$\begin{gathered} \hline 2 \\ \hline \text { numu } \\ \text { He } \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { unuwn } \\ \text { Li } \\ 6.941 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ \hline \text { вexumu } \\ \text { Be } \\ 9.012 \\ \hline \end{gathered}$											$\begin{array}{\|c} \hline 5 \\ \hline \text { nonow } \\ \mathbf{B} \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \begin{array}{c} 6 \\ \text { canow } \\ \text { C } \\ 12.01 \end{array} \\ \hline \end{gathered}$		$\begin{gathered} 8 \\ \hline \text { oxcex } \\ \mathbf{o} \\ \mathbf{1 6 . 0 0} \end{gathered}$	$\begin{gathered} \hline 9 \\ \hline \text { fubens } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \substack{10 \\ \text { Neon } \\ \text { Ne } \\ 20.18 \\ 2} \end{gathered}$
$\begin{gathered} 11 \\ \text { soounu } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \text { macesusum } \\ \mathbf{M g} \\ 24.31 \\ \hline \end{gathered}$											$\begin{gathered} 13 \\ \text { sumunum } \\ \text { Al } \\ \text { A6.98 } \end{gathered}$	$\begin{gathered} 14 \\ \text { sulcov } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \text { punserneus } \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \text { surur } \\ \text { s. } \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \begin{array}{c} \text { cumons } \\ \text { Cl } \\ 35.45 \end{array} \end{gathered}$	$\begin{gathered} 18 \\ \text { ancor } \\ \text { Ar } \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \text { мonsusum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { cuncum } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \begin{array}{c} \text { scavoum } \\ \text { Sc } \\ 44.96 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \end{gathered}$	$\begin{gathered} 22 \\ \text { manven } \\ \mathbf{T i} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \substack{2 \text { vewnomen } \\ \mathbf{V} \\ 50.94} \\ \hline \end{gathered}$	24 c．nomun $\mathbf{C r}$ 52.00	$\begin{gathered} \hline \text { mncanses } \\ \text { Mn } \\ \text { M4.94 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 260 } \\ \text { me } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { conur } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{array}{\|c\|c} \hline 28 \\ \text { nexel } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{array}$	$\begin{gathered} \hline 29 \\ \text { copren } \\ \text { Cu } \\ 63.55 \\ \hline \end{gathered}$	$\begin{array}{r} 30 \\ \text { znc } \\ \text { Zn } \\ 65.39 \\ \hline \end{array}$	$\begin{gathered} \hline \text { 311ux } \\ \text { caurn } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$		$\begin{gathered} \hline 33 \\ \text { nesenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { suruwn } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { senure } \\ \text { neonur } \\ \text { Br } \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \substack{\text { kevrover } \\ \mathbf{K r} \\ 83.80} \end{gathered}$
$\begin{gathered} \hline \text { Rewnun } \\ \mathbf{R} \\ \mathbf{R b} \\ 85.47 \\ \hline \end{gathered}$	$\begin{gathered} \hline 38 \\ \substack{\text { sneorrum } \\ \text { srum } \\ 87.62 \\ 87.62 \\ \hline} \end{gathered}$			$\begin{gathered} \hline 41 \\ \text { movenn } \\ \text { Nb } \\ 92.91 \end{gathered}$	42 $\substack{\text { mo4 runexum } \\ \text { Mo } \\ 95.94}$		$\begin{gathered} \hline 44 \\ \text { Rumenum } \\ \text { Ru } \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { RH0 } \\ \text { Renum } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { panumu } \\ \text { Pd } \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { suvir } \\ \text { Ag } \\ 107.87 \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { cancun } \\ \text { Cd } \\ \text { C12.40 } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 49 \\ \text { 40014 } \\ \text { IIn } \\ \text { 114.82 } \\ \hline \end{array}$	$\begin{array}{r} \hline 50 \\ \text { Tw } \\ \text { Sn } \\ 118.69 \\ \hline \end{array}$	$\begin{gathered} \hline 51 \\ \substack{\text { arrimenver } \\ \text { Sb } \\ 121.75 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { ruwnu } \\ \text { Te } \\ \text { 127.60 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { tonene } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 54 \\ \text { xexow } \\ \text { Xe } \\ \text { 131.30 } \\ \hline \end{array}$
$\begin{gathered} \hline 55 \\ \text { cassum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { naxum } \\ \text { Ba } \\ 137.34 \\ \hline \end{gathered}$	57－71	$\begin{gathered} \hline 72 \\ \text { nenum } \\ \text { Hf } \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { ravaum } \\ \text { Ta } \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} 74 \\ \text { tucsursen } \\ \mathbf{W} \\ 183.85 \end{array} \end{gathered}$	$\begin{gathered} \text { nity } \\ \text { numum } \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} \begin{array}{c} 76 \\ \text { osmuxu } \\ \text { Os } \\ 190.2 \end{array} \end{gathered}$	$\begin{array}{\|c} \hline 77 \\ \text { nemum } \\ \text { II } \\ \text { I92.22 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline 78 \\ \text { ruarum } \\ \mathbf{P t} \\ 195.09 \end{array}$	$\begin{array}{\|c\|} \hline 79 \\ \text { coun } \\ \text { Au } \\ 166.97 \end{array}$	$\begin{gathered} 80 \\ \text { mincury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { malum } \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \hline \text { R20 } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ \text { suswn } \\ \text { Bi } \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { rotoxum } \\ \mathbf{P 0} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { stranse } \\ \text { At } \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \text { 8enoon } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
	$\begin{gathered} \hline 88 \\ \text { nenum } \\ \text { Ra } \\ {[226.0]} \\ \hline \end{gathered}$	89－103	$\begin{gathered} 104 \\ \hline \text { uruturemunn } \\ \mathbf{R f} \\ {[261]} \\ \hline \end{gathered}$	$\begin{aligned} & 105 \\ & \text { purusum } \\ & \text { Db } \\ & {[262]} \\ & \hline \end{aligned}$	$\begin{gathered} 106 \\ \text { sexuenerum } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 107 \\ & \text { nonkum } \\ & \text { Bh } \\ & {[262]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 108 \\ \text { nussum } \\ \mathbf{H s} \\ {[265]} \\ \hline \end{gathered}$	109 мermeurum $\mathbf{M t}$ ［266］		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { roentranum } \\ \text { Rg } \\ {[272]} \end{array} \\ \hline \end{array}$							

$\underset{\mathrm{s}}{\text { LANTHANOID }}$	$\begin{gathered} \hline 57 \\ \text { Lамтнамм } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \begin{array}{c} \text { севruм } \\ \text { Ce } \\ 140.12 \end{array} \end{gathered}$	59 prasbovmum $\mathbf{P r}$ 140.91	$\begin{gathered} \hline 60 \\ \text { меормим } \\ \text { Nd } \\ \mathbf{1 4 4 . 2 4} \end{gathered}$	61 PROMETHIUM Pm ［144．9］	$\begin{gathered} \hline 62 \\ \text { saмаRuм } \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \text { Euvorum } \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { canounum } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { теввим } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 66 \\ \text { oxsprosum } \\ \mathbf{D y} \\ 162.50 \end{array} \end{gathered}$	$\begin{gathered} 67 \\ \text { ноьмим } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { 6ввим } \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { пииним } \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \substack{7 \text { мтввним } \\ \mathbf{Y} \\ \mathbf{Y b} \\ 173.04} \end{gathered}$	$\begin{gathered} 71 \\ \text { нитвим } \\ \mathbf{L u} \\ 174.97 \end{gathered}$
ACTINOIDS	$\begin{gathered} \hline 89 \\ \text { Астмим } \\ \text { Ac } \\ {[227.0]} \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { 9новим } \\ \text { Th } \\ 232.04 \end{gathered}$	91 рвотастмим $\mathbf{P a}$ $[231.0]$	$\begin{gathered} 92 \\ \text { Cranum } \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \begin{array}{c} \text { мертимим } \\ \text { Np } \\ {[237.0]} \end{array} \end{gathered}$	$\begin{gathered} 94 \\ \substack{94 \\ \text { puronum } \\ \mathbf{P u} \\ [239.1]} \end{gathered}$	$\begin{gathered} 95 \\ \text { Амввасим } \\ \text { Am } \\ {[243.1]} \end{gathered}$	$\begin{gathered} 96 \\ \begin{array}{c} 96 \mathrm{cmum} \\ \mathbf{C m} \end{array} \\ {[247.1]} \end{gathered}$	97 $\left.\begin{array}{c}\text { веккпиим } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	$\begin{gathered} 98 \\ \begin{array}{c} 98 \\ \text { calfornum } \\ \text { Cf } \\ {[252.1]} \end{array} \end{gathered}$	$\begin{gathered} 99 \\ \text { епмтাемим } \\ \text { Es } \\ {[252.1]} \end{gathered}$	$\begin{gathered} \substack{100 \\ \text { еканим } \\ \text { Fm } \\ [257.1]} \end{gathered}$	101 Meñervum Md ［256．1］	$\begin{gathered} 102 \\ \begin{array}{c} \text { мовеним } \\ \text { No } \\ {[259.1]} \end{array} \end{gathered}$	$\begin{gathered} \hline 103 \\ \text { Lawbencum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

