The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2007

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 14, 16, 19, 23 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
2-10	36	

Short answer section

	Marks			
Page	Max	Gained		Marker
11	8			
12	4			
13	8			
15	10			
17	8			
18	7			
20	6			
21	7			
22	6			
Total	64			

•	Define what is meant by an "allotrope". Give an example of a poinvolving (i) carbon and (ii) oxygen.	<i>uir</i> of allotropes	larks 3
•	The $K_{\rm sp}$ of Fe(OH) ₃ is 2.0×10^{-39} M ⁴ . What is the solubility of Fe(OH) ₃	$OH)_3$ in g L^{-1} ?	5
	Answer:		
	What effect does lowering the pH have on the solubility of Fe(OH); answer.	? Explain your	

• The following data were obtained for the reaction between gaseous nitric oxide and hydrogen at 1280 °C.

Marks 4

$2NO(g) + \ 2H_2(g) \ \to \ N_2(g) + \ 2H_2O(g)$

Experiment number	INITIAL [NO] (M)	INITIAL [H ₂] (M)	INITIAL REACTION RATE (M min ⁻¹)
1	5.0×10^{-3}	2.0×10^{-3}	1.3×10^{-5}
2	1.0×10^{-2}	2.0×10^{-3}	5.0×10^{-5}
3	1.0×10^{-2}	4.0×10^{-3}	1.0×10^{-4}

Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Solution A consists of a 0.50 M aqueous solution of HF at 25 °C. Calc Solution A. The pK _a of HF is 3.17.	culate the pH of 8
pH =	
At 25 °C, 1.00 L of Solution B consists of 12.97 g of lithium fluoride, in water. Calculate the pH of Solution B.	LiF, dissolved
pH =	
Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to 25 °C. Calculate the pH of the final solution.	equilibrate at
pH =	
If you wanted to adjust the pH of the mixture of Solution A and Solution B to be exactly equal to 4.00, which component in the mixture would you need to increase in concentration?	

Briefly explain why H ₂	S is a strong	er Brønsted acid	d than H ₂ O.		ľ
Compounds of <i>d</i> -block to represent atomic orb					
					1
Complete the following	g table.				
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of d-electrons in the complex ion	Species formed upon dissolving in water	
$K_3[Mn(CN)_6]$					
Ru(NH ₃) ₅ (OH ₂)](NO ₃) ₂					

 $en = ethylenediamine = NH_2CH_2CH_2NH_2 \\$

 $[Cr(en)_3]Cl_3$

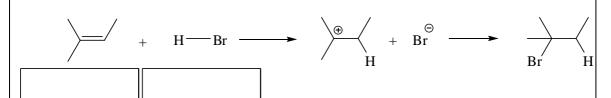
• Give the name of the starting material where indicated and the constitutional formula of the major organic product formed in each of the following reactions.

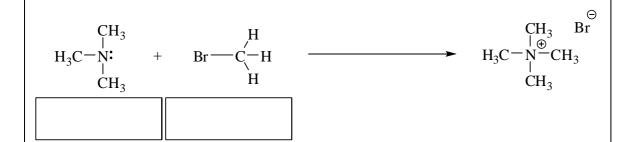
Marks 8

$$\begin{array}{c|c} & \text{Cl}_2 \\ \hline & \text{CCl}_4 \text{ (solvent)} \end{array}$$

Name:

$$\begin{array}{c|c}
 & Na_2Cr_2O_7 / H^{\oplus} \\
\hline
OH
\end{array}$$


Name:


Name:

$$\bigcap_{\operatorname{Br}} O^{\ominus} K^{\oplus}$$

• Classify the starting materials for each of the following reactions as nucleophile or electrophile in the boxes provided and indicate with $\delta \oplus$ and $\delta \ominus$ the polarisation of the H–Br and C–Br bonds in the starting materials.

Marks 4

• Draw the constitutional formula for each of the following compounds.

3

(Z)-4-methylhex-2-ene

trans-1,3-dichlorocyclohexane

(R)-butan-2-ol

• Consider the following reaction sequence.

Marks 6

Give the reagents $\bf B$ and $\bf D$ and draw the structures of the major organic products, $\bf A$, $\bf C$, $\bf E$ and $\bf F$, formed in these reactions.

A	D
В	E
С	F

Marks 7

• Dopa is a non-proteinogenic amino acid used to treat Parkinson's disease. Only the enantiomer (**X**) is effective in restoring nerve function. The other enantiomer is highly toxic.

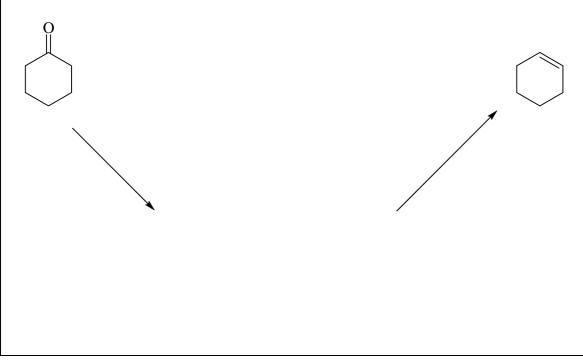
$$\begin{array}{c|c} HO & HO \\ \hline \\ HO & OH \\ \hline \\ O & \mathbf{b} \end{array}$$

What is the molecular formula of (X)?

List the substituents attached to the stereogenic centre in descending order of priority according to the sequence rules.

highest priority		lowest priority

What is the absolute stereochemistry of (X)? Write (R) or (S).


Name the functional groups, highlighted by the boxes \boldsymbol{a} and \boldsymbol{b} , present in (\boldsymbol{X}) .

a =	b =

Give the constitutional formula of the product obtained when (\mathbf{X}) is treated with NaHCO₃.

• Show clearly the reagents you would use to carry out the following chemical conversion. Exactly one intermediate compound and hence two steps are required. Give the constitutional formula of the intermediate compound.

Marks 6

How could you distinguish between the starting material, the intermediate compound and the final product using infrared spectroscopy?

CHEM1002 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \, \mathrm{J \ K^{-1}}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa

 $0 \, ^{\circ}\text{C} = 273 \, \text{K}$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^3	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p			

CHEM1002 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Standard Reduction 1 otendars, E	
Reaction	<i>E</i> ° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$Co^{3+}(aq) + e^{-} \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2^+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Co}(\operatorname{s})$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1002 - CHEMISTRY 1B

Useful formulas

0 4 61 14	
Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-Ea/RT}$
p = kc	$ \ln[A] = \ln[A]_{o} - kt $
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k} = \frac{E_a}{P} \left(\frac{1}{T} - \frac{1}{T} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log_{10}\frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
HYDROGEN																	He
1.008		-															4.003
3	4											5	6	7	8	9	10
Lithium	Beryllium Be											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na Na	MAGNESIUM											ALUMINIUM Al	Silicon	PHOSPHORUS P	SULFUR	Cl	Argon Ar
22.99	Mg 24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 YTTRIUM	40 zirconium	41 NIOBIUM	42 MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 PALLADIUM	47 SILVER	48	49 INDIUM	50	51	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	Barium Ba		HAFNIUM Hf	Tantalum Ta	W	RHENIUM Re	OSMIUM OS	IRIDIUM	PLATINUM Pt	Au	Hg	THALLIUM T1	Pb	Bismuth Bi	POLONIUM	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109	110	111							
FRANCIUM	RADIUM		RUTHERFORDIUM D	DUBNIUM	SEABORGIUM	BOHRIUM D L	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							

LANTHANIDES	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]	