22/02(a)

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

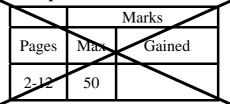
SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2006

TIME ALLOWED: THREE HOURS

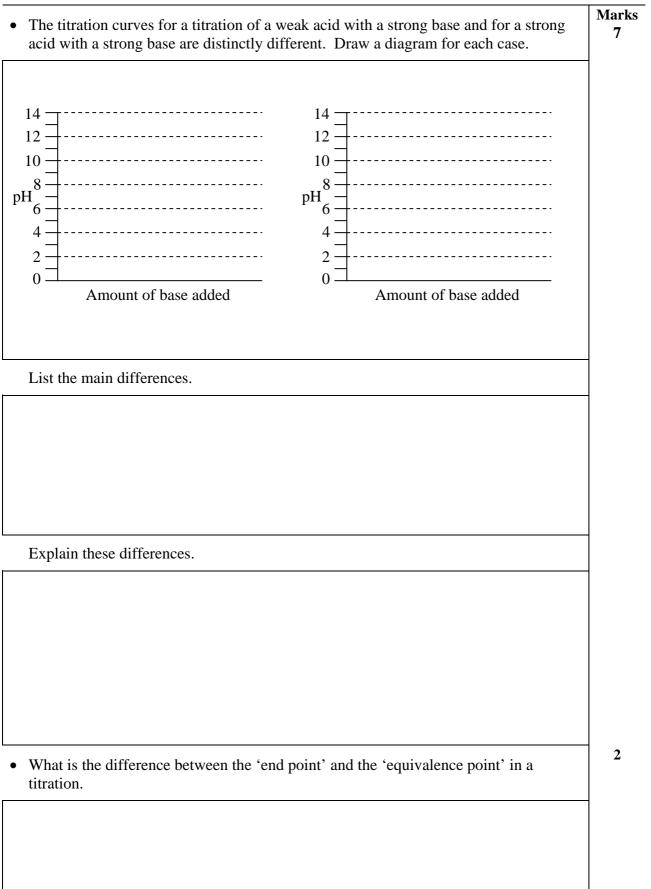
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 16, 18, 21 and 24 are for rough working only.

OFFICIAL USE ONLY


Multiple choice section

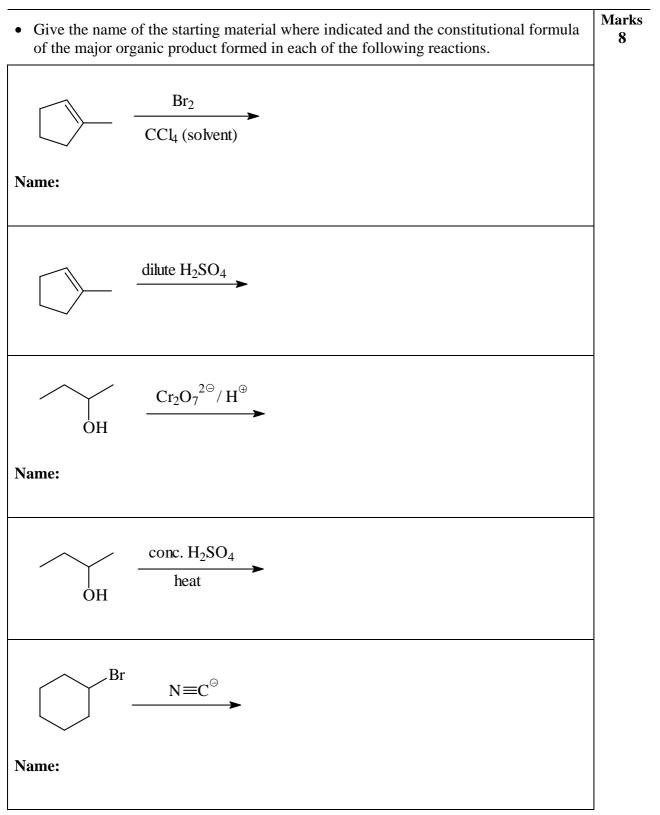
Short answer section

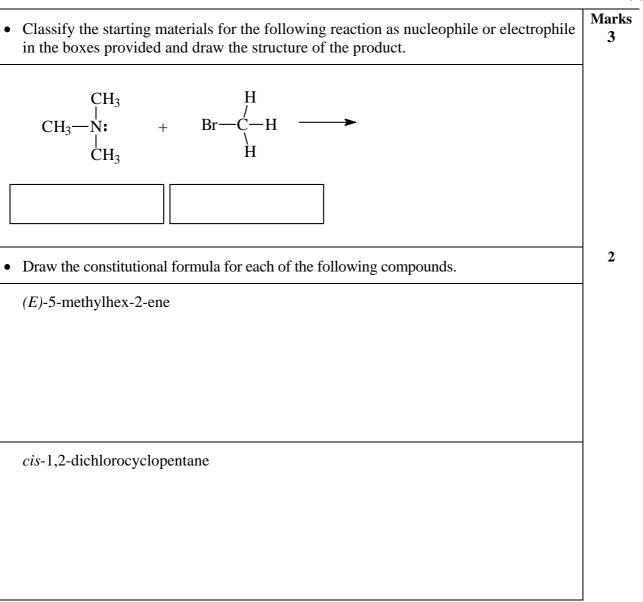
		Marks		
Page	Max	Gained		Marker
13	4			
14	9			
15	6			
17	6			
19	8			
20	5			
22	6			
23	6			
Total	50			

•	Limestone caves can be found near Sydney. How have these caves been formed? Use appropriate chemical equations in your explanation.	Marks 4
	Stalactites and stalagmites can be found in many limestone caves. How do these	_
	Stalactites and stalagmites can be found in many limestone caves. How do these form? Use appropriate chemical equations in your explanation.	_

CHEM1002	2006-N-4	November 2006	22/02(b)
• What is the pH of a	0.020 M solution of HF? The pK_a of H	IF is 3.17.	Marks 2
			_
	pH =		2
• What is the pH of a acetate? The pK_a of	solution that is 0.075 M in acetic acid a CH_3COOH is 4.76.	and 0.150 M in sodium	2
	pH =		
• What is the pH of a	0.010 M solution of Ba(OH) ₂ ?		2
			-
	pH =		

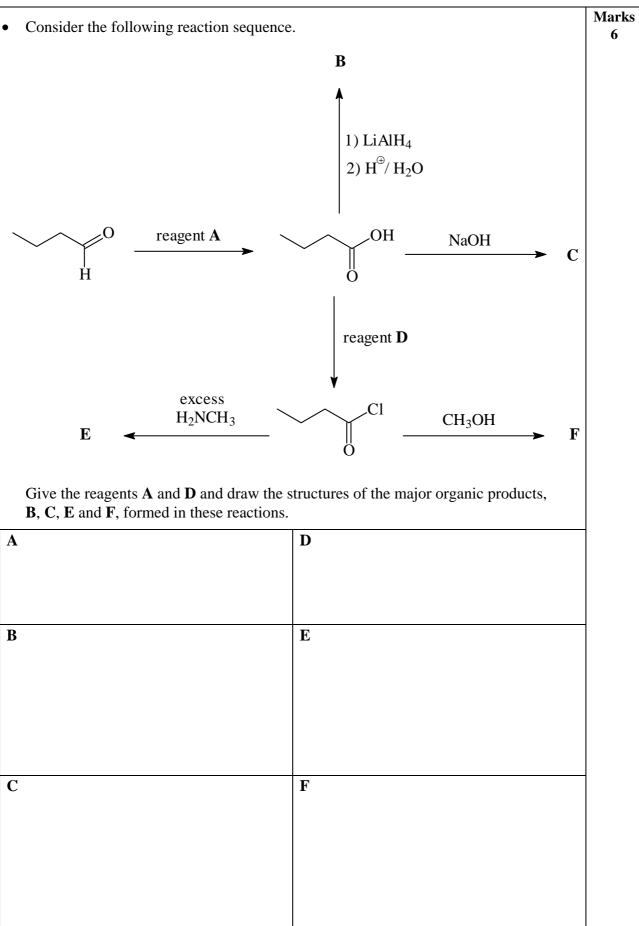
Marks


6


• Complete the following table.

Complete the following table.											
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in transition metal	Species formed upon dissolving in water							
Na ₂ [Ni(CN) ₄]											
[Cr(NH ₃) ₅ Cl]Cl ₂											
[Cu(en) ₃]Br ₂											

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1002	2006-N-9	2006-N-9 November 2006					
• Phenylalanine is commonly produc		Only the enantiomer (X) is	Marks 6				
	$\mathbf{(X)} \qquad \qquad \mathbf{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{H$	DH b					
What is the molec	ular formula of (X)?						
List the substituen according to the se	nts attached to the stereogenic centre in equence rules.	descending order of priority					
highest priority		lowest priority					
What is the absolu	te stereochemistry of (\mathbf{X}) ? Write (R)	or (<i>S</i>).					
Name the function	al groups, highlighted by the boxes a	and b , present in (X).					
a =	b =						
THE REMAIN	NDER OF THIS PAGE IS FOR ROU	UGH WORKING ONLY.	I				

CHEM1002 - CHEMISTRY 1B

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

Decimal multiples

	-
Prefix	Symbol
kilo	k
mega	Μ
giga	G
	kilo mega

CHEM1002 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Standard Reduction Fotentials, E	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
-	
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.13 -0.14
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$ $\operatorname{Ni}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ni}(s)$	-0.14 -0.24
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.14 -0.24 -0.28
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.14 -0.24 -0.28 -0.44
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.28 -0.44 -0.74
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{c} -0.14 \\ -0.24 \\ -0.28 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.36 \\ -2.71 \end{array}$

CHEM1002 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\ln x = 2.303 \log x$

November 2006

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008		_												_			2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM Li	BERYLLIUM Be											BORON	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIU	M SILICON	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98		30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	titanium Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	iron Fe	COBALT CO	NICKEL Ni	COPPER Cu	zinc Zn	GALLIUM	GERMANIUM	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
X 39.10	40.08	44.96	47.88	▼ 50.94	52.00	1VIII 54.94	55.85	58.93	58.69	63.55	65.39	69.72		74.92	78.96	DI 79.90	KI 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER			TIN C	ANTIMONY	TELLURIUM	IODINE	XENON
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc [98.91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd 112.40	In 114.82	2 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	0, 11	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUN	1 LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs 132.91	Ba 137.34		Hf 178.49	Ta 180.95	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.3	7 Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87	88	89-103		100.55	106	100.2	108	102.22	1)5.0)	170.77	200.37	204.3	207.2	200.70	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM	07 105	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr			Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57	7 4	58	59	60	61	62	63	64	6	5	66	67	68	69	70	71
LANTHANID	DES LANTHA	NUM CE	RIUM PRA	SEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINI	JM TERBI	UM DY	SPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
				Pr	Nd	Pm	Sm	Eu	Gd	T		Dy	Ho	Er	\mathbf{Tm}	Yb	Lu
	138. 89		0.12 1 0.00	40.91 91	144.24 92	[144.9] 93	150.4 94	151.96 95	157.2 96	5 158. 97		62.50 98	164.93 99	167.26 100	168.93 101	173.04 102	174.97 103
ACTINIDES		UM THO	DRIUM PRO	TACTINIUM	URANIUM	93 NEPTUNIUM	PLUTONIUM	95 AMERICIUM	CURIUM	BERKEL	LIUM CAI	IFORNIUM	99 EINSTEINIUM	FERMIUM	101 MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A			Pa	U	Np	Pu	Am	Cm			Cf	Es	Fm	Md	No	Lr
	[227	.0] 23	2.04 [2	231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1	[] [247	.1] [2	252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

22/02(b)