GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		NUMBER	
NAMES		TABLE	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 15, 17, 20, 23 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
12	8			
13	7			
14	6			
16	6			
18	8			
19	5			
21	10			
22	6			
Total	56			

- Many elemental metals crystallise in one of two forms, either with a cubic close packed (сср) structure or a hexagonal close packed (hcp) structure. What are the three main features that these two forms have in common and what is the main difference?
- Teeth are made from hydroxyapatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$. Use chemical equations where appropriate to explain why an acidic medium promotes tooth decay?

How does the fluoridation of drinking water aid in the prevention of tooth decay?

- Consider the compound with formula $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Br}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. (en = ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$).

Write the formula of the complex ion.

Write the symbols of the ligand donor atoms.

What is the d electron configuration of the metal ion in this complex?

- Describe the difference between a strong and a weak acid.

Describe in qualitative terms how the percentage ionisation of a weak acid changes when an aqueous solution of the weak acid is diluted.

Which chemical principle can be used to explain the change in percentage ionisation of a weak acid on dilution and how?

- Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.

Briefly describe the relationship between the rate of a reaction and the activation energy for the reaction.

The rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ increases from $1.50 \times 10^{-5} \mathrm{~s}^{-1}$ at $27^{\circ} \mathrm{C}$ to $3.80 \times 10^{-3} \mathrm{~s}^{-1}$ at $57^{\circ} \mathrm{C}$. Calculate the activation energy for the reaction.

- What is the pH of a 0.010 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$?

- What is the pH of a 0.010 M solution of HNO_{2} ? The $\mathrm{p} K_{\mathrm{a}}$ of HNO_{2} is 3.15 .
\square
- What is the pH of a solution that is 0.020 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.010 M in $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$? The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.8 \times 10^{-5} \mathrm{M}$.
- Give the name of the starting material where indicated and the constitutional formula of the major organic product formed in each of the following reactions.

Name:

Name:

Name:
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Draw the repeating unit of the polymer formed in the following reactions.

- Draw the constitutional formula for each of the following compounds.

3,5-dichlorophenol
(E)-4-methyl-2-pentene
(S)-2-bromobutane

- Classify the starting materials of the following reactions as nucleophile or electrophile and indicate with $\delta \oplus$ and $\delta \ominus$ the polarisation of the $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}=\mathrm{O}$ bonds.

\square
\square

\square
\square
- Consider the following reaction sequence.
A $\longleftarrow \stackrel{\mathrm{NaOH}}{ }$

$\xrightarrow[\text { 2) } \mathrm{H}^{\oplus}]{\text { 1) } \mathrm{LiAlH}_{4}}$ B
SOCl_{2}
$\mathbf{D} \stackrel{\text { excess methanol }}{C} \xrightarrow{\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}} \mathbf{E} \xrightarrow{\text { conc. } \mathrm{HCl} / \text { heat }} \mathbf{F}$

Draw the structures of the major organic products, A-F, formed in these reactions.

A	D
B	E
C	
	F

- Adrenaline (\mathbf{X}) is a naturally occurring hormone and neurotransmitter that is released by the human body in response to stress.

What is the molecular formula of (X)? \qquad
List the substituents attached to the stereogenic centre in descending order of priority according to the sequence rules.
highest priority lowest priority

What is the absolute stereochemistry of (X)? Write (R) or (S).

Name the functional groups, highlighted by the boxes a and b, present in (X).

$\mathbf{a}=$	$\mathbf{b}=$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})$	$0(\mathrm{by} \mathrm{definition)}$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al(s)}$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

Useful formulas

Quantum Chemistry	Radioactivity
$E=h \nu=h c / \lambda$	$t_{1 / 2}=\ln 2 / \lambda$
$\lambda=h / m v$	$A=\lambda N$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$
	${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \end{aligned}$
Colligative properties $\begin{aligned} & \pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{p}=k \mathrm{c} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E_{\mathrm{a}} / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \end{aligned}$ $E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \end{aligned}$
Polymers $R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$	Mathematics If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \begin{array}{c} \text { нypoocen } \\ \mathbf{H} \\ 1.008 \end{array} \\ \hline \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { нецим } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { цином } \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} \hline 4 \\ \text { вегмимм } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} \hline 5 \\ \substack{\text { Boron } \\ \mathbf{B} \\ 10.81 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 6 \\ \substack{\text { carbon } \\ \mathbf{C} \\ 12.01 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { мाtrogen } \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} \begin{array}{c} 8 \\ \text { oxxeen } \\ \mathbf{O} \end{array} \\ 16.00 \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { fuorne } \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { neow } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \text { sonum } \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	12 macnesum $\mathbf{M g}$ 24.31											$\begin{gathered} 13 \\ \text { А九цмпмим } \\ \text { Al } \\ 26.98 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ \text { suluon } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	15 puosphorus \mathbf{P} 30.97	$\begin{gathered} 16 \\ \text { surfur } \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$		$\begin{gathered} 18 \\ \begin{array}{c} \text { arcon } \\ \mathbf{A r} \\ 39.95 \end{array} \end{gathered}$
$\begin{gathered} 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { сангым } \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scannum } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { ттамлмм } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vaxabum } \\ \mathbf{V} \\ 50.94 \\ \hline} \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { chromuм } \\ \mathbf{C r} \end{array} \\ 52.00 \end{gathered}$	25Mancanses Mn 54.94$\|$	$\begin{gathered} \hline 26 \\ \text { rRov } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { міскц } \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { copres } \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zanc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{gathered}$	31 GALLIUM Ga 69.72	$\begin{gathered} \hline 32 \\ \text { сввмалাм } \\ \mathbf{G e} \\ 72.59 \end{gathered}$		$\begin{gathered} \hline 34 \\ \text { shentum } \\ \mathbf{S e} \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вRoмnine } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \text { квутом } \\ \mathbf{K r} \\ 83.80 \end{gathered}$
37 RUBIDIUM Rb 85.47	$\begin{gathered} \hline 38 \\ \substack{3 \text { stontuм } \\ \mathbf{S r} \\ 87.62} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 39 \\ \text { yтrाuм } \\ \mathbf{Y} \end{array} \\ 88.91 \end{gathered}$	$\begin{array}{\|c} \hline 40 \\ \text { zriconve } \\ \mathbf{Z r} \\ 91.22 \end{array}$	$\begin{gathered} \hline 41 \\ \text { моовим } \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$	42 моиввеким $\mathbf{M o}$ 95.94	$\begin{gathered} \hline 43 \\ \text { теснетим } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Ruтинемм } \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rнопим } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { Pallanum } \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sinver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 48 \\ \text { саммим } \\ \text { Cd } \\ 112.40 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мnпuм } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { riv } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANTMMNy } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { тешиим } \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { ıonNe } \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { xerow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
$\begin{gathered} 55 \\ \text { cassum } \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { вА尺ाим } \\ \mathbf{B a} \\ 137.34 \end{gathered}$	57-71	$\begin{gathered} \hline 72 \\ \text { нағлим } \\ \text { Hf } \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \text { талтаим } \\ \mathbf{T a} \\ 180.95 \end{gathered}$		$\begin{gathered} \hline 75 \\ \text { мннемтм } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { rınाum } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ \begin{array}{c} 7, \text { рапнмм } \\ \mathbf{P t} \\ 195.09 \end{array} \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { сой } \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \text { мвRCury } \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тианим } \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { Lean } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \substack{\text { віммтн } \\ \mathbf{B i} \\ 208.98 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \end{gathered}$	$\begin{array}{\|c\|} \hline 84 \\ \text { poonum } \\ \mathbf{P o} \\ {[210.0]} \\ \hline \end{array}$	$\begin{gathered} \hline 85 \\ \text { Astatine } \\ \mathbf{A t} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \text { Ranow } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \text { freancum } \\ \text { Fr } \\ {[223.0]} \end{gathered}$	$\begin{gathered} \hline 88 \\ \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \end{gathered}$	89-103		$\begin{gathered} 105 \\ \text { оимлим } \\ \mathbf{D b} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ \text { sеаввсеим } \\ \mathbf{S g} \\ {[266]} \end{gathered}$	$\begin{gathered} 107 \\ \text { вонким } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ \text { hassum } \\ \mathbf{H s} \\ {[265]} \\ \hline \end{gathered}$	109 мепNеRuм $\mathbf{M t}$ [266]									

LANTHANIDES	$\begin{gathered} 57 \\ \text { Lavthanum } \\ \text { La } \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \text { ceruum } \\ \mathbf{C e} \\ 140.12 \end{gathered}$	59 prastopmuм $\mathbf{P r}$ 140.91	$\begin{gathered} \hline 60 \\ \substack{\text { меоммим } \\ \text { Nd } \\ 144.24} \end{gathered}$	61 рвомениим $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \begin{array}{c} \text { Eunopum } \\ \text { Eu } \\ 151.96 \end{array} \end{gathered}$	$\begin{gathered} \text { 64 } \\ \text { canoоним } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { тевним } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	mysposum Dy 162.50	$\begin{gathered} 67 \\ \text { номмим } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { еввом } \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тиним } \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \text { гттвинми } \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { цикним } \\ \mathbf{L u} \\ 174.97 \end{gathered}$
ACTINIDES	$\begin{gathered} \hline 89 \\ \text { асттим } \\ \text { Ac } \\ {[227.0]} \end{gathered}$	$\begin{gathered} 90 \\ \begin{array}{c} \text { тногим } \\ \text { тh } \\ \text { Th } \\ 232.04 \end{array} \end{gathered}$	91 $\left.\begin{array}{c}\text { рroтастімим } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$		$\begin{gathered} 93 \\ \begin{array}{c} \text { петтимим } \\ \mathbf{N p} \\ {[237.0]} \end{array} \end{gathered}$	94 $\left.\begin{array}{c}\text { putronum } \\ \mathbf{P u} \\ {[239.1]}\end{array}\right]$	95 $\left.\begin{array}{c}\text { амеRстим } \\ \text { Am } \\ \text { [243.1] }\end{array}\right]$	$\begin{gathered} 96 \\ \begin{array}{c} 96 \text { curum } \\ \text { Cm } \\ {[247.1]} \end{array} \end{gathered}$	97 $\left.\begin{array}{c}\text { веккшишм } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	98 $\left.\begin{array}{c}\text { calforvium } \\ \text { Cf } \\ {[252.1]}\end{array}\right]$	99 Enstrenum Es $[252.1]$	$\begin{gathered} \hline 100 \\ \begin{array}{c} \text { ненимм } \\ \mathbf{F m} \\ {[257.1]} \end{array} \end{gathered}$	101 $\left.\begin{array}{c}\text { Meñervum } \\ \text { Md } \\ \text { [256.1] }\end{array}\right]$	$\begin{gathered} \hline 102 \\ \text { моввим } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} \hline 103 \\ \text { Lawrencum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

