The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

• All questions are to be attempted. There are 18 pages of examinable material.

- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 15, 17, 20, 23 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks		
Pages	Max	Gained	
2-11	44		

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	8			
13	7			
14	6			
16	6			
18	8			
19	5			
21	10			
22	6			
Total	56			

CHEM1002 2005-N-2 November 2005 22/02(a)

•	Many elemental metals crystallise in one of two forms, either with a cubic close packed (ccp) structure or a hexagonal close packed (hcp) structure. What are the three main features that these two forms have in common and what is the main difference?	Marks 4
•	Teeth are made from hydroxyapatite, Ca ₅ (PO ₄) ₃ OH. Use chemical equations where	4
	appropriate to explain why an acidic medium promotes tooth decay?	
	How does the fluoridation of drinking water aid in the prevention of tooth decay?	

CHEM1002 2005-N-3 November 2005 22/02(a)

•	Consider the compound with formula $[Ni(en)_2(H_2O)_2]Br_2 \cdot 2H_2O$. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$).	Ma 3
	Write the formula of the complex ion.	
	Write the symbols of the ligand donor atoms.	
	What is the d electron configuration of the metal ion in this complex?	1
•	Describe the difference between a strong and a weak acid.	4
	Describe in qualitative terms how the percentage ionisation of a weak acid changes when an aqueous solution of the weak acid is diluted.	
	Which chemical principle can be used to explain the change in percentage ionisation of a weak acid on dilution and how?	

CHEM1002 2005-N-4 November 2005 22/02(a)

•	Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.	Marks 6
	Priofly describe the relationship between the rate of a reaction and the activation	
	Briefly describe the relationship between the rate of a reaction and the activation energy for the reaction.	
	The rate constant for the decomposition of N_2O_5 increases from $1.50 \times 10^{-5} \text{ s}^{-1}$ at $27 ^{\circ}\text{C}$ to $3.80 \times 10^{-3} \text{s}^{-1}$ at $57 ^{\circ}\text{C}$. Calculate the activation energy for the reaction.	
	Answer:	

CHEM1002	2005-N-5	November 2005	22/02(a)
• What is the pH of	f a 0.010 M solution of Ca(OH))2?	Marks 2
	pH =		
• What is the pH of	f a 0.010 M solution of HNO ₂ ?	The p K_a of HNO ₂ is 3.15.	2
	all –		
. What is the all of	pH =		-? 2
• What is the pH of The K_a of CH ₃ CC	OOH is 1.8×10^{-5} M.	CH ₃ COOH and 0.010 M in CH ₃ CO ₂	! 2
	pH =		

• Give the name of the starting material where indicated and the constitutional formula of the major organic product formed in each of the following reactions.

Marks 8

Br
$$\stackrel{\ominus}{\longrightarrow}$$
CN

Name:

$$OH \qquad Na_2Cr_2O_7 / H^{\oplus}$$

Name:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Draw the repeating unit of the polymer formed in the following reactions.

Marks 2

$$O$$
 Cl NH_2 $+$ NH_2 NH_2

• Draw the constitutional formula for each of the following compounds.

3

3,5-dichlorophenol

(*E*)-4-methyl-2-pentene

(*S*)-2-bromobutane

• Classify the starting materials of the following reactions as nucleophile or electrophile and indicate with $\delta \oplus$ and $\delta \ominus$ the polarisation of the C–Br and C=O bonds.

Marks 4

6

$$H^{\odot} + \begin{matrix} H_{3}C \\ H_{3}C \end{matrix} \longrightarrow \begin{matrix} H_{3}C \\ H_{3}C \end{matrix} \longrightarrow \begin{matrix} H^{\oplus} \end{matrix} \xrightarrow{H_{3}C} \begin{matrix} H_{3}C \\ H_{3}C \end{matrix} \longrightarrow \begin{matrix} H \\ H_{3}C \end{matrix}$$

• Consider the following reaction sequence.

A NaOH

OH

OH $\frac{1) \text{LiAlH}_4}{2) \text{H}^{\oplus}}$ B

SOCl₂

excess methanol

C

HN(CH₃)₂

F

conc. HCl/heat

F

Draw the structures of the major organic products, **A-F**, formed in these reactions.

·	•
A	D
В	E
$\mid \mathbf{C} \mid$	F

• Adrenaline (X) is a naturally occurring hormone and neurotransmitter that is released by the human body in response to stress.				
HO HO a	$ \begin{array}{c c} H & \mathbf{b} \\ N & CH_3 \end{array} $ (X)			
What is the molecular formula of (\mathbf{X}) ?				
List the substituents attached to the stereo according to the sequence rules.	ogenic centre in descending order of priority			
highest priority	lowest priority			
What is the absolute stereochemistry of (2)	X)? Write (<i>R</i>) or (<i>S</i>).			
Name the functional groups, highlighted l	by the boxes a and b , present in (X).			
a =	b =			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Decimal fractions			Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p			

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Standard Reduction Potentials, $E^{\,o}$

Reaction	E° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^- \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$\mathbf{D}(2\pm c)$ $\mathbf{A} = \mathbf{D}(c)$	0.40
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$Pb^{-}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.13 -0.14
•	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$ $\operatorname{Ni}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ni}(s)$	-0.14 -0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$ $\operatorname{Ni}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ni}(s)$ $\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.14 -0.24 -0.44
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.44 -0.74
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.14 -0.24 -0.44 -0.74 -0.76
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36 -2.71

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Radioactivity
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$
$\lambda = h/mv$	$A = \lambda N$
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w}=pK_{\rm a}+pK_{\rm b}=14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-E_{a}/RT}$
p = kc	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 \qquad R \qquad T_1 \qquad T_2$
Electrochemistry	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$Moles\ of\ e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
$E^{\circ} = (RT/nF) \times 2.303 \log K$	
$= (RT/nF) \times \ln K$	
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$	
Polymers	Mathematics
$R_{ m g}=\sqrt{rac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1]																2
HYDROGEN																	HELIUM
H																	He
1.008		7											Г	1	Г	T	4.003
3	4											5	6	7	8	9	10
Li	Beryllium Be											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12	1										13	14	15	16	17	18
1 1 SODIUM	1 Z MAGNESIUM											1.3 ALUMINIUM	14 SILICON	PHOSPHORUS	SULFUR	1 / CHLORINE	1 O ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM Sr	YTTRIUM	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	Tc Tc	RUTHENIUM Ru	RHODIUM	PALLADIUM Pd	SILVER A G	CADMIUM	Indium	Sn	Sb	Tellurium Te	IODINE	XENON Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	Ag 107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	37-71	/ ∠ HAFNIUM	TANTALUM	7 4 TUNGSTEN	RHENIUM	OSMIUM	/ / IRIDIUM	/ O PLATINUM	GOLD	MERCURY	O I THALLIUM	OZ LEAD	BISMUTH	O4 POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109									
FRANCIUM			RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
FRANCIUM Fr	RADIUM		RUTHERFORDIUM Rf	Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt									
Francium Fr [223.0]			RUTHERFORDIUM Rf [261]	Db [262]	SEABORGIUM Sg [266]	вонким Вh [262]	HASSIUM HS [265]	Mt [266]									

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
LANTHANIDES	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM T T	NEPTUNIUM T	PLUTONIUM D	AMERICIUM	CURIUM	BERKELLIUM D 1_	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM T
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]