The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

• All questions are to be attempted. There are 18 pages of examinable material.

- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Page 20 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
2-12	50	

Short answer section

		Marks		
Page	Max	Gained		Marker
13	10			
14	7			
15	8			
16	8			
17	6			
18	5			
19	6			
Total	50			

CHEM1002	200	04-N-2		November 2004	22/02(a
				in ionisation energies reducing agents.	Marks 2
• Compounds of a to represent ator	d-block elemenic orbitals, a	ents are frequent account for this p	ly paramagnetion	c. Using the box notation pounds of Cu ²⁺ .	2
					6
• Complete the fo	<u> </u>		Number of	Species formed upon	1
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in metal in complex ion	Species formed upon dissolving in water	
$K_2[Ni(CN)_4]$					
[Cr(NH ₃) ₅ Cl]Cl ₂					

 $[Co(en)_3]Br_3$

•	What are allotropes? Give an example of a pair of allotropes involving carbon and a
	second example of a pair not involving carbon.

Marks 3

4

• The following data were obtained for the reaction between gaseous nitric oxide and chlorine at 1400 K.

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$$

EXPERIMENT NUMBER	INITIAL [NO] (mol L ⁻¹)	$\begin{array}{c} \text{INITIAL } [\text{Cl}_2] \\ (\text{mol } \text{L}^{-1}) \end{array}$	INITIAL REACTION RATE (mol L ⁻¹ s ⁻¹)
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.10	0.72

Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	Answer:

CHEM1002	2004-N-4	November 2004	22/02(a)
	ts of a 0.15 M aqueous solu of Solution A. The pK_a of F	tion of nitrous acid (HNO ₂) at 25 °C. INO ₂ is 3.15.	Marks 8
	pH =	=	
	of Solution B consists of 13. te the pH of Solution B.	8 g of sodium nitrite (NaNO ₂) dissolved	1
	pH =	=	
		(1.00 L) and allowed to equilibrate at	
_			
	pH =	=	
and Solution B to	djust the pH of the mixture be exactly equal to 3.00, when the substitution of the pH of the mixture did you need to increase in the substitution of the pH of the mixture	nich component	

• Give the name of the starting material where indicated and the constitutional formula(s) of the major organic product(s) formed in each of the following reactions.

Marks 8

Name:

$$CH_3 \xrightarrow{C} O^{\odot} K^{\oplus}$$

Name:

Br
$$\begin{array}{c}
1. \text{ Mg / dry ether} \\
0 \\
2. \\
H
\end{array}$$

$$3. \text{ H}^{\oplus}/\text{H}_2\text{O}$$

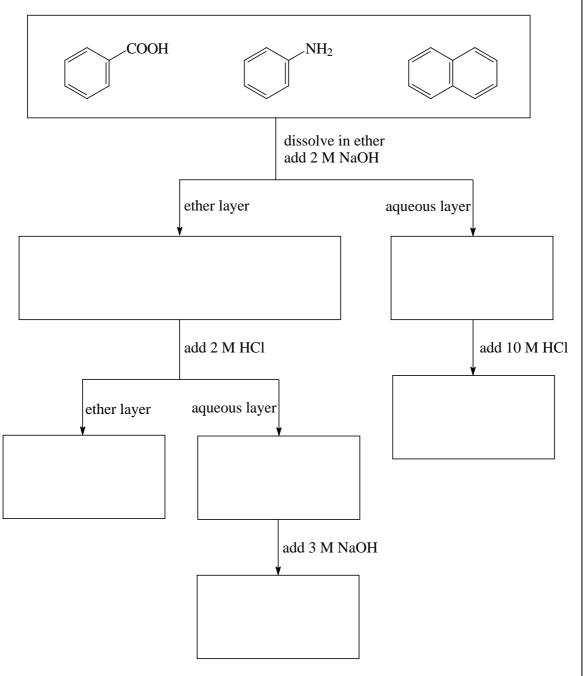
CH₃O

• Draw the repeating unit of the polymer formed in the following reactions.

OCH₃

$$H_2N \underbrace{\hspace{1cm}}_{NH_2}$$

$$HO$$
 CI


• Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. NOTE: More than one step is necessary.

4

Marks 5

Organic compounds may be readily separated in the laboratory by extraction methods
using acid-base chemistry. Complete the following flow chart by showing the
constitutional formulas of all species that will be present in the aqueous and organic
phases and hence show how this mixture can be separated into its individual
components.

• Salbutamol (**X**) is the active ingredient in the asthma treatment VentolinTM. Although the drug is marketed as a racemic mixture, the enantiomer of (**X**) shown is solely responsible for the beneficial pharmacological action (smooth muscle relaxation).

Marks 6

What is the molecular formula of (X)?

List the substituents attached to the stereogenic centre in descending order of priority according to the sequence rules.

highest priority		lowest priority

What is the absolute stereochemistry of (X)? Write (R) or (S).

Name the functional groups, highlighted by the boxes **a** and **b** present in (**X**).

Give the constitutional formula of the product formed when (X) is treated with cold dilute sodium hydroxide solution.

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \, {\rm J \ K^{-1}}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Decin	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^3	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	M				
10^{-9}	nano	n	10^{9}	giga	G				
10^{-12}	pico	p							

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Standard Reduction Potentials, $E^{\,o}$

Reaction	<i>E</i> ° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^- \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O~+~2e^- \rightarrow~H_2(g)~+~2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Useful Formulas

Quantum Chemistry

$$E = hv = hc/\lambda$$
$$\lambda = h/mu$$

$$4.5k_{\rm B}T = hc/\lambda$$

$$E = Z^2 E_{\rm R} (1/n^2)$$

Kinetics

$$k = Ae^{-Ea/RT}$$

 $t_{1/2} = \ln 2/k$

$$\ln[A] = \ln[A]_0 - kt$$

Gas Laws

$$PV = nRT$$

$$(P + n^2 a/V^2)(V - nb) = nRT$$

Colligative Properties

$$\pi = cRT$$
 $p = kc$

$$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$$

$$\Delta T_{\rm f} = K_{\rm f} m$$

$$\Delta T_{\rm b} = K_{\rm b} m$$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

Radioactivity

$$A = \lambda N$$

$$\ln(N_0/N_t) = \lambda t$$

14
C age = 8033 $\ln(A_0/A_t)$

Acids and Bases

$$pK_{w} = pH + pOH = 14.00$$

$$pK_{w} = pK_{a} + pK_{b} = 14.00$$

$$pH = pK_a + log\{[A^-] / [HA]\}$$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Moles\ of\ e^- = It/F$$

$$E = E^{\circ} - (RT/nF) \ln Q$$

$$= E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \ln K$$

$$= (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q$$
 (at 25 °C)

Polymers

$$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$$

Mathematics

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\ln x = 2.303 \log x$$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	нелим Не
1.008																	4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	Silicon	PHOSPHORUS P	SULFUR	Cl	ARGON
Na	Mg																Ar
22.99	24.31	0.1	22	22	2.4	25	26	27	20	20	20	26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20	21 scandium	22 TITANIUM	23 VANADIUM	24 CHROMIUM	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	31	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM TTC	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM T	PLATINUM TD4	GOLD	MERCURY TT~	THALLIUM	LEAD DL	BISMUTH D:	POLONIUM	ASTATINE A	RADON D
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34	00.102	178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORDIUM	105 DUBNIUM	106 SEABORGIUM	107 BOHRIUM	108 hassium	109 MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
[]	[]	l .	L J	r=1	[-~~]	[]	[-~-]	[]									

LANTHANIDES	57 LANTHANUM La	58 CERIUM Ce	59 PRASEODYMIUM Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 SAMARIUM Sm	63 Europium Eu	64 GADOLINIUM Gd	65 TERBIUM Tb	66 Dysprosium Dy	67 ногмим Но	68 Erbium Er	69 thulium Tm	70	71 Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 actinium Ac	90 thorium Th	91 PROTACTINIUM Pa	92 uranium U	93 NEPTUNIUM Np	94 PLUTONIUM Pu	95 AMERICIUM Am	96 curium Cm	97 BERKELLIUM Bk	98 CALIFORNIUM Cf	99 EINSTEINIUM ES	100 FERMIUM Fm	101 MENDELEVIUM Md	102 Nobelium No	103 LAWRENCIUM Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]