FUNDAMENTALS OF CHEMISTRY 1B (CHEM1002) - November 2005

2005-N-2

- Both have hexagonal layers of metal atoms.

Both have coordination numbers of 12 .
Both fill 74% of the space in a unit cell.
The layer stacking sequence is different:
hcp: ABABAB
сср: ABCABC

- $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}(\mathrm{s}) \rightleftharpoons 5 \mathrm{Ca}^{2+}(\mathrm{aq})+3 \mathrm{PO}_{4}^{3-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Both $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ ions react with $\mathrm{H}^{+}(\mathrm{aq})$ and are therefore removed from the above equilibrium. The reaction therefore moves to the right and more hydroxyapatite dissolves to re-establish equilibrium and tooth decay increases.

Fluoride ion in the water promotes the formation of fluoroapatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$. This compound is less soluble in water than apatite. Also $\mathrm{F}^{-}(\mathrm{aq})$ is a weaker base than OH^{-} (aq), so it is less soluble in acid than the hydroxy analogue.

2005-N-3

- $\quad\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

N and O
$3 d^{8}$

- \quad A strong acid dissociates 100% in water: $\mathrm{HA}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

A weak acid does not dissociate 100% in water: $\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
The \% ionisation increases.
Le Chatelier’s principle.
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ Dilution affects all terms in this equation, causing decrease in Q. The reaction will therefore move to the right, i.e. \% ionisation will increase.

2005-N-4

- The two molecules have to be aligned or oriented correctly.

They need to collide with sufficient energy to overcome activation barrier.
From Arrhenius equation, $k=A e^{-E_{\mathrm{a}} R T}$, the larger the activation energy, E_{a}, the smaller the rate constant, k. i.e. higher E_{a} results in slower reaction rate.
$152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2005-N-5
12.30
2.5
4.46

2-bromobutane

cyclohexanol

2005-N-7
-

-

$$
\begin{array}{l|l|}
\hline \text { nucleophile } & \text { electrophile } \\
\hline
\end{array}
$$

-

2005-N-9

- $\quad \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$

C(N,H,H)

$-\mathrm{H}$

(R)

$$
\mathbf{a}=\text { aromatic ring } \quad \mathbf{b}=\text { secondary amine }
$$

