FORMULA	SYSTEMATIC NAME	
	aluminium oxide	
K ₂ Cr ₂ O ₇		
	calcium acetate	
$[Fe(H_2O)_6]^{3+}$		
	sodium tetrahydroxoplumbate(II)	
Na[Ag(CN) ₂]		
	tetraamminecopper(II) sulfate	
NH ₃		
	iron(II) phosphate	
(NH ₄) ₂ SO ₄		

1. (**5 marks**) Complete the following table:

2. (8 marks) (a) For which atom does each of the following ground state electron configuration apply:

(i) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

(ii) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$

(b) Give three ways in which typical compounds of d-block elements differ from compounds of s-block elements.

(c) Give full structures in terms of subshells for each of the following **species**:

(i) $S^{2!}$

(ii) Mg

(d) Give an equation to define the first ionization energy of lithium.

Page 3 of 8 pages

3. (2 marks) Why are the noble gases so unreactive?

4. (4¹/₂ marks) Complete the following table.

· · · · ·	1 2		
MOLECULE	LEWIS DIAGRAM	GEOMETRIC ARRANGEMENT OF ELECTRON PAIRS around the underlined atom	SHAPE OF MOLECULE
<u>Si</u> Cl ₄			
DE			
$\underline{B}F_3$			
XeF ₄			
AC 14			

5. ($1\frac{1}{2}$ marks) Consider the water molecule, H₂O. Use the valence bond model to detail the occupancy of atomic orbitals by the valence shell electrons (**bonding and lone pairs**) for all atoms, and the bond types resulting from any overlap of atomic orbitals.

6. ($1\frac{1}{2}$ marks) Dropwise addition of 16 M ammonia, NH₃, to a solution of a salt containing the Cu²⁺ ion at first produces a blue precipitate, but when excess of the ammonia solution has been added, the blue precipitate dissolves to form a purple solution. Account for these observations.

Page 5 of 8 pages

7. (1¹/2 marks) Why is the first ionization energy of an element which is higher up in a given group of the periodic table always greater than the first ionization energy for an element which is lower down in the same group?

8. (1¹/₂ marks) Explain why benzene which contains pi-bonds is much less reactive than expected when compared with cyclohexene which also has pi-bonding.

9. (1¹/₂ marks) In order to prepare the most effective buffer at a given pH, what if possible, would one do?

10. (6¹/₂ marks) Relevant pK_a data is on the separate data sheet.

Page 6 of 8 pages

(a) Calculate the pH of the following solutions in water. Give your answer to 2 decimal places.

(i) Benzoic acid (0.10 M)

(ii) Sodium acetate (0.10 M)

(b) A buffer of pH = 5.00 is required, using CH₃COOH as the weak acid and its conjugate, CH₃CO₂[!], as the weak base. If the concentration of CH₃COOH used is 1.00 M, calculate the concentration of CH₃CO₂[!] that would be needed in the buffer to give the desired pH. Give your answer to 2 significant figures.

11. (1¹/₂ marks) Explain why the statement "weak acids have strong conjugate bases" is incorrect.

12. (2 marks)

(a) It is usually only for titrations between a strong acid and a strong base that the pH = 7 at the equivalence point. Explain why the equivalence point is not at pH = 7 in titrations involving a weak acid or a weak base.

(b) From the list of indicators on the data sheet, select a suitable indicator for a titration between acetic acid and sodium hydroxide solutions.

13. ($1\frac{1}{2}$ marks) Distinguish between the terms "end point" and "equivalence point" in reference to a titration.

14. (1 mark) Use the pK_a data on the data page where relevant to rank the following acids in order of increasing strength:

ammonium ion, hydrogen chloride, hydrogen cyanide, carbonic acid

weakest acid

strongest acid

15. (1¹/₂ marks) Explain why a solution of sodium carbonate has a pH of about 11. Include an equation in your answer.

Page 8 of 8 pages

THIS PAGE FOR ROUGH WORKING ONLY

CHEMISTRY 1002 SEMESTER 2 EXAMINATION

DATA PAGE, PART A

Acid dissociation	constants,	р <i>К</i> _a ,	at 298 K
-------------------	------------	---------------------------	----------

benzoic acid, C ₆ H ₅ COOH		4.20
acetic acid, CH ₃ COOH		4.76
carbonic acid, H ₂ CO ₃ [!]	6.35	
hydrogen cyanide, HCN		9.22
ammonium ion, NH4 ⁺	9.24	

Acid/base indicator pK_a values

methyl yellow 3.1

methyl red 5.1

phenolphthalein 9.6

alizarin yellow11.1

Periodic Table: