CONFIDENTIAL

PART B

TOTAL TIME ALLOWED (FOR PARTS A \& B): THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

SURNAME			OTHER NAMES		
SID		FACULTY		TABLE	
NUMBER			NUMBER		

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 15 pages of examinable material in two parts.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for Part A is 40% and for Part B is 60%. The possible score per question is shown.
- Each new question begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Pages 5 and 12 are for rough working only.
- Part A of this examination is in a separate booklet.

OFFICIAL USE ONLY

Short answer section

Page	Marks			
	Max	Gained		Marker
9	10			
10	4			
11	7			
Total	21			
Check Total				

- DOPA (3,4-dihydroxyphenylalanine) (\mathbf{F}) is the biological precursor to the neurotransmitter dopamine.

(i) On the above diagram, clearly circle the stereogenic centre in (F).
(ii) List the substituents attached to the stereogenic centre in descending order of priority according to the appropriate rules.

highest priority

lowest priority

(iii) Only the (S)-enantiomer of (F) is
converted to dopamine in the brain. Draw
the (S)-enantiomer of DOPA by
completing the digram on the right.

- Compound (G) represents a monomeric unit of an important bio logical polymer.

(G)
i) What is the common name of the biopolymer?
ii) What is the name of the repeating unit of the biopolymer?
iii) On the diagram above, circle and label the phosphate, sugar and heterocyclic base sections of the biopolymer.
- Nylon-6 (H) is a polymer with repeating units derived from 6-aminohexanoic acid.

Marks 4

(H)
(i) What functional group is present in Nylon-6?
(iii) What product is formed when Nylon-6 is hydrolysed with hot, concentrated HCl ?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Consider the following synthetic sequence.

(i) Compound \mathbf{J} is oxidised with acidified dichromate solution to give compound \mathbf{K}. What is the structure of \mathbf{K} ?
\square
(ii) Hydration of the double bond in \mathbf{K} with reagent \mathbf{L} produces compound \mathbf{M}. What is reagent \mathbf{L} ?
(iii) In aqueous solution, compound \mathbf{M} is in equilibrium with \mathbf{N}, a cyclic compound. What is the structure of \mathbf{N} ?

SECOND SEMESTER EXAMINATION

NOVEMBER 2000
TIME ALLOWED: THREE HOURS

Numerical Data

Acid dissociation constants, $\mathrm{p} K_{\mathrm{a}}$ at 298 K
benzoć acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad 4.20$
acetic acid, $\mathrm{CH}_{3} \mathrm{COOH} 4.76$
carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3} \quad 6.35$
hydrogen cyanide, HCN 9.22
ammonium ion, $\mathrm{NH}_{4}^{+} \quad 9.24$

Acid/base indicator $\mathrm{p} K_{\mathrm{a}}$ values at 298 K

methyl yellow	3.1
methyl red	5.1
phenolphthalein	9.6
alizarin yellow	11.1

Periodic Table of the Elements

Group			$\begin{aligned} & 1 \\ & \hline \mathbf{H} \end{aligned}$	$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$								13	14	15	16	17	18
$\begin{gathered} 3 \\ \mathrm{Li} \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \end{gathered}$											$\begin{aligned} & \hline 5 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \mathbf{C} \end{aligned}$	N	$\begin{aligned} & \hline 8 \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \mathbf{F} \end{aligned}$	$\begin{gathered} 10 \\ \mathbf{N e} \end{gathered}$
$\begin{array}{\|c} \hline 11 \\ \mathbf{N a} \end{array}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	3	4	5	6	7	8	9	10	11	12	13 Al	$\begin{aligned} & 14 \\ & \mathbf{S i} \end{aligned}$	15 \mathbf{P}	$\begin{aligned} & 16 \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & { }^{17} \\ & \mathbf{C l} \end{aligned}$	$\begin{gathered} 18 \\ \mathbf{A r} \end{gathered}$
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \hline 20 \\ & \mathbf{C a} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T i} \end{aligned}$	$\begin{aligned} & \hline 23 \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathbf{C r} \end{aligned}$	$\begin{gathered} 25 \\ \mathbf{M n} \end{gathered}$	$\begin{aligned} & \hline 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathbf{C o} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathbf{C u} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \end{gathered}$	P3 As	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ \hline \end{gathered}$
$\begin{array}{\|l} \hline 37 \\ \mathbf{R b} \\ \hline \end{array}$	$\begin{aligned} & \hline 38 \\ & \mathbf{S r} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \end{array}$	$\begin{gathered} \hline 42 \\ \text { Mo } \end{gathered}$	$\begin{aligned} & \begin{array}{l} 43 \\ \mathbf{T c} \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \text { Pd } \end{aligned}$	$\begin{aligned} & 47 \\ & \mathbf{A g} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathbf{C d} \end{aligned}$	$\begin{aligned} & \hline 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { Sn } \end{aligned}$	51 Sb	$\begin{gathered} 52 \\ \mathrm{Te} \end{gathered}$	$\begin{aligned} & \hline 53 \\ & \text { I } \end{aligned}$	$\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$
$\begin{array}{\|c} \hline 55 \\ \mathrm{Cs} \end{array}$	$\begin{gathered} 56 \\ \text { Ba } \end{gathered}$	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$	72 $\mathbf{H f}$	$\begin{aligned} & 73 \\ & \mathbf{T a} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{W} \end{aligned}$	$\begin{array}{\|l\|} \hline 75 \\ \mathbf{R e} \end{array}$	$\begin{array}{\|l\|} \hline 76 \\ \text { Os } \end{array}$	$\begin{aligned} & \hline 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	$\begin{gathered} 79 \\ \mathbf{A u} \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \end{gathered}$	$\begin{aligned} & 81 \\ & \mathbf{T 1} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathbf{P b} \end{aligned}$	$\begin{aligned} & \hline 83 \\ & { }^{83} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathbf{P o} \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{gathered} 86 \\ \mathbf{R n} \end{gathered}$
$\begin{array}{\|l} \hline 87 \\ \mathbf{F r} \end{array}$	$\begin{gathered} 88 \\ \mathbf{R a} \end{gathered}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{aligned} & 104 \\ & \mathbf{R f} \end{aligned}$	$\begin{aligned} & 105 \\ & \mathbf{H a} \end{aligned}$	$\begin{aligned} & \hline 106 \\ & \mathbf{S g} \end{aligned}$	$\begin{aligned} & 107 \\ & \text { Ns } \end{aligned}$	$\begin{aligned} & \hline 108 \\ & \mathbf{H s} \end{aligned}$	$\begin{gathered} 109 \\ \mathbf{M t} \end{gathered}$									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

