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Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will

be taken into account.

There is one Handout containing three formulas.

Throughout, B(t) denotes standard Brownian motion. Any required properties of Brownian
motion may be assumed without proof, but they must be explicitly mentioned when they
are used.
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Question 1
Consider the standard Brownian motion B(t).

(a) Let a > 0. Define the first hit time τa. [2]

(b) For each a > 0, compute the probability distribution of τa (any properties of B(t) that
you use must be stated explicitly). [7]

(c) Compute the probability distribution of M(t) = max
s∈[0,t]

B(s).
[3]

(d) Show that reflected Brownian motion R(t) = |B(t)| has the same probability distribu-
tion as M(t) for each fixed t ≥ 0. Hence or otherwise, compute E(M(t)). [7]

(e) Prove that R(t) satisfies the Markov property

P (R(t) < x|R(t1) = x1, . . . , R(tk) = xk) = P (R(t) < x|R(tk) = xk),

for all t1 < t2 < · · · < tk < t. (You may assume without proof that B(t) satisfies this
property.) [3]

(f) Does M(t) satisfy the Markov property? Briefly justify your answer, referring to the
figure below if you so wish. [3]
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Question 2

(a) Define Brownian motion X(t) with drift parameter µ and variance parameter σ2. [2]

(b) Let Y be a random variable with a standard normal distribution and let λ ∈ R. Prove

that E(eλY ) = e
1
2
λ2

. [3]

(c) Let Z(t) = zeX(t) be geometric Brownian motion, where z > 0 is fixed. Use part (b)
to compute E(Z(t)) and Var(Z(t)). Define the drift parameter α for Z(t). [4]

(d) Suppose that z = 1, α = −5, σ2 = 9. Compute P (Z(4) < 8|Z(1) = 5).

(You may express the answer in the form P (Y < c) where Y ∼ N(0, 1).) [3]

(e) Define what it means for X(t) to be a Gaussian process and define the associated mean
function µ(t) and covariance function Σ(s, t). [4]

(f) Define X(t) = B(t) − tB(1), t ≥ 0. Explain why X(t) is a Gaussian process. For

0 < t1 < t2 < 1, determine the distribution of the random vector

(
X(t1)
X(t2)

)
and

compute the covariance function of X(t).

By now, you should have recognised this Gaussian process. Write down the usual
definition of X(t). [9]

SEE NEXT PAGE
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Question 3
Let {X(t); t ≥ 0} be a stochastic process with continuous time and continuous state-space.
Denote the joint density functions by p(x1, t1; x2, t2; . . . ) and the conditional density functions
by p(x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . . ).

(a) State the Markov property in terms of the conditional density functions. [2]

(b) Suppose that X(t) is a Markov processes.

(i) Prove that

p(x1, t1; x2, t2; . . . ; xn, tn) = p(x1, t1|x2, t2)p(x2, t2|x3, t3) . . . p(xn−1, tn−1|xn, tn)p(xn, tn),

for all t1 ≥ t2 ≥ · · · ≥ tn and all n ≥ 1. [3]

(ii) Derive the Chapman-Kolmogorov equation. [3]

(c) The differential form of the Chapman-Kolmogorov equation can be written in the form

∂

∂t
p(z, t|y, t′) =

∫ [
W (z|x, t)p(x, t|y, t′))−W (x|z, t)p(z, t|y, t′))

]
dx

− ∂

∂z
[D1(z, t)p(z, t|y, t′)] +

1

2

∂2

∂z2
[D2(z, t)p(z, t|y, t′)],

for t ≥ t′ where D2 ≥ 0, W ≥ 0. Do not derive this equation(!) but answer the
following:

(i) Write down the initial condition for p(z, t|y, t). [1]

(ii) Which special case is called the Master equation? Use this equation and the
approximation

p(z, t + ∆t|y, t) ∼ p(z, t|y, t) +
∂

∂t
p(z, t|y, t)∆t,

to explain why the resulting stochastic processes are called jump processes. [6]

(iii) Which special case is called the Fokker-Planck equation? Prove that the density
for B(t) (with y = 0, t′ = 0) satisfies a particularly simple Fokker-Planck equation.

[6]

(iv) The Liouville equation is the special case W ≡ 0, D2 ≡ 0. Let x(y, t) be the
unique solution to the initial value problem

dx

dt
= D1(x, t), x(t′) = y.

Verify that the deterministic process p(z, t|y, t′) = δ(z − x(y, t)) satisfies the Li-
ouville equation. [4]

SEE NEXT PAGE
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Question 4

(a) Give the definition for {Sn; n ≥ 1} to be a martingale. [3]

(b) Prove that E
{
E(Y |X)

}
= E(Y ). Hence prove that if {Sn; n ≥ 1} is a martingale,

then E(Sn) = E(S1) for all n ≥ 1. [5]

(c) Let 0 < t0 < t1 < t2 < · · · , and define Sn = B(tn). Prove that {Sn; n ≥ 1} is a
martingale. [3]

(d) Let 0 < t0 < t1 < t2 < · · · , and define Sn = B(tn)2 − tn. Prove that {Sn; n ≥ 1} is a
martingale. [4]

(e) Give examples of martingales of the form Sn = X1 + · · ·Xn for which

(i) the random variables Xj are not independent.

(ii) the sequence {Sn; n ≥ 1} does not have the Markov property.

(You may either give one example for which both (i) and (ii) are satisfied, or two
separate examples.) [5]

(f) Let {Sn; n ≥ 1} be a non-negative martingale. Prove that

P (Sn ≥ λ) ≤ E(S1)

λ
,

for all n ≥ 1 and all λ > 0.

State (but do not prove) the maximal inequality for non-negative martingales. [5]

INTERNAL EXAMINER: I. Melbourne
EXTERNAL EXAMINER: W. Krzanowski


