UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE3 Examination

Module MS333 STATISTICAL METHODS FOR BUSINESS AND FINANCE

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account.

Students may use approved calculators.
Cambridge Statistical Tables will be provided.

Question 1

(a) A time series is to be smoothed using a weighted moving average filter, obtained by fitting a cubic polynomial to successive groups of 7 observations. Show that, if least squares fitting is used, the filter is

$$
\frac{1}{21}(-2,3,6,7)
$$

[Note : It can be assumed that $\sum_{t=-3}^{3} t^{2}=28, \quad \sum_{t=-3}^{3} t^{4}=196$.]
(b) Consider the time series

$$
X_{t}=m_{t}+Y_{t}, \quad(t=1,2, \ldots, n)
$$

where $m_{t}=\beta_{1} \tau_{t}+\beta_{2} \tau_{t}^{2}$ is an assumed quadratic trend function which is known to pass through the origin and Y_{t} is a random disturbance with zero mean and variance σ^{2}. It is required to estimate β_{1}, β_{2} by minimizing the sum of squares

$$
S(\beta)=\sum_{t=1}^{n}\left(X_{t}-\beta_{1} \tau_{t}-\beta_{2} \tau_{t}^{2}\right)^{2}, \quad \text { where } \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] .
$$

Derive the normal equations and, hence or otherwise, show that they can be expressed in the form $G=H \widehat{\beta}$, where

$$
G=\left[\begin{array}{l}
\sum_{t=1}^{n} \tau_{t} X_{t} \tag{7}\\
\sum_{t=1}^{n} \tau_{t}^{2} X_{t}
\end{array}\right] \quad \text { and } \quad H=\left[\begin{array}{ll}
\sum_{t=1}^{n} \tau_{t}^{2} & \sum_{t=1}^{n} \tau_{t}^{3} \\
\sum_{t=1}^{n} \tau_{t}^{3} & \sum_{t=1}^{n} \tau_{t}^{4}
\end{array}\right] .
$$

(c) The trend function for an industrial production index X_{t} is known to pass through the origin and 30 values of X_{t} are available over an adjusted time-scale τ_{t}. Summary statistics concerning these data are given in the box below. Assuming that a quadratic function $m_{t}=\beta_{1} \tau_{t}+\beta_{2} \tau_{t}^{2}$ is a reasonable representation of the trend for the industrial production index, estimate the parameters of m_{t} and comment briefly on your results.

[Note: It can be assumed that $\operatorname{Var}(\widehat{\beta})=\widehat{\sigma}^{2} \mathrm{H}^{-1}$ where $\widehat{\sigma}^{2}=0.052$.]

Question 2

(a) The time series U_{t} and Y_{t} are defined by $U_{0}=0, \quad U_{t}=Z_{1}^{(1)}+\ldots+Z_{t}^{(1)}$ and by $Y_{t}=U_{t}+Z_{t}^{(2)}$, where $Z_{t}^{(1)}, Z_{t}^{(2)}$ are uncorrelated white noise processes with expectations zero and with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ respectively, i.e. $W N\left(0, \sigma_{1}^{2}\right)$ and $W N\left(0, \sigma_{2}^{2}\right)$ respectively.
(i) Show that $E\left(U_{t}\right)=E\left(Y_{t}\right)=0$, that $\operatorname{Var}\left(U_{t}\right)=t \sigma_{1}^{2}$ and $\operatorname{Var}\left(Y_{t}\right)=t \sigma_{1}^{2}+\sigma_{2}^{2}$, and that $\operatorname{Cov}\left(U_{t}, U_{t+\tau}\right)=\operatorname{Cov}\left(Y_{t}, Y_{t+\tau}\right)=t \sigma_{1}^{2}$ for all $\tau \geq 1$. Hence deduce that Y_{t} is not stationary.
(ii) Show that the differenced series $X_{t}=Y_{t}-Y_{t-1}$ is stationary and that it has autocorrelation function given by

$$
\rho(1)=-\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+2 \sigma_{2}^{2}} \text { and } \rho(\tau)=0 \text { for all } \tau \geq 2
$$

(b) It is required to find the moving average representation for an $\operatorname{ARMA}(p, q)$ model which is specified by

$$
X_{t}-\frac{1}{3} X_{t-1}-\frac{1}{4} X_{t-2}+\frac{1}{12} X_{t-3}=Z_{t}+\frac{1}{2} Z_{t-1}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$.
(i) Find the values of p, q so that there is no parameter redundancy in the model and check whether the model is causal.
(ii) Show that X_{t} can be represented in operator form by

$$
X_{t}=\left(1-\alpha_{1} B\right)^{-1}\left(1-\alpha_{2} B\right)^{-1} Z_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}
$$

where B is the backshift operator and α_{1}, α_{2} are suitably defined real numbers which should be specified.
(iii) Confirm that the value of ψ_{j} takes the form

$$
\psi_{0}=1, \psi_{1}=\alpha_{1}+\alpha_{2}, \psi_{j}=\frac{\alpha_{1}^{j+1}-\alpha_{2}^{j+1}}{\alpha_{1}-\alpha_{2}} \text { for } j \geq 2
$$

Question 3

An $\operatorname{ARMA}(1,1)$ process is defined by

$$
X_{t}-\phi X_{t-1}=Z_{t}+\theta Z_{t-1}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $\phi+\theta \neq 0$.
(a) State the conditions for the $\operatorname{ARMA}(1,1)$ process to be stationary and invertible.
(b) By multiplying the model equation by $X_{t-\tau}$ and taking expectations, or otherwise, obtain the autocovariance equations

$$
\begin{aligned}
\gamma(0) & =\phi \gamma(1)+\sigma^{2}\left(1+\phi \theta+\theta^{2}\right) \\
\gamma(1) & =\phi \gamma(0)+\sigma^{2} \theta \\
\gamma(\tau) & =\phi \gamma(\tau-1) \quad(\tau \geq 2)
\end{aligned}
$$

Hence show that

$$
\gamma(0)=\frac{1+2 \theta \phi+\theta^{2}}{1-\phi^{2}} \sigma^{2} \quad \text { and } \quad \gamma(\tau)=\frac{(1+\theta \phi)(\phi+\theta)}{1-\phi^{2}} \phi^{\tau-1} \sigma^{2}, \quad \text { for } \tau \geq 1
$$

(c) It is assumed that the values of the autocorrelation of lag 1,

$$
\rho(1)=\frac{(1+\theta \phi)(\phi+\theta)}{1+2 \theta \phi+\theta^{2}}
$$

and of the parameter ϕ are known, and it is required to find the value for θ. Let π_{0} and π_{1} be defined by

$$
\pi_{0}=1+\phi^{2}-2 \phi \rho(1) \quad \text { and } \quad \pi_{1}=\rho(1)-\phi
$$

Show that $\theta \pi_{0}=\left(1+\theta^{2}\right) \pi_{1}$ and hence describe briefly how the value of θ can be found.
(d) The values of $\rho(1)$ and ϕ for a stationary and invertible ARMA $(1,1)$ process are found to be $\rho(1)=11 / 14$ and $\phi=2 / 3$. Using equations from part (c), obtain the value of θ.

Question 4

(a) Give an expression for the autocorrelation function (ACF) $\rho(\tau)$ of $\operatorname{lag} \tau$ for a moving average (MA (q)) process. Explain briefly how the sample ACF $\widehat{\rho}(\tau)$ is useful for helping to identify an $\operatorname{ARMA}(p, q)$ process.
(b) Define the Yule-Walker equations for an autoregressive $(\operatorname{AR}(p))$ process and, hence or otherwise, define the partial autocorrelation function (PACF) $\phi_{\tau \tau}$ of lag τ. Explain briefly how the sample PACF $\widehat{\phi}_{\tau \tau}$ is useful for helping to identify an $\operatorname{ARMA}(p, q)$ process.
(c) Values of the sample ACF and of the sample PACF for lags $\tau=1, \ldots, 10$ of an observed time series are given in the following tables. Explain briefly what kind of model you think that the time series is likely to follow.

τ	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho}(\tau)$	0.91	0.75	0.56	0.29	0.23	0.11	-0.09	0.02	0.01	-0.07

τ	1	2	3	4	5	6	7	8	9	10
$\widehat{\phi}_{\tau \tau}$	0.91	0.07	-0.06	0.03	-0.02	0.02	-0.06	0.01	-0.07	0.03

(d) Suppose that a time series for n observations is identified as an $\operatorname{ARMA}(p, q)$ process, where $p=1, q=2$, and that the three parameters have been estimated. Define the residual autocorrelation of lag $\tau, \widehat{\rho}_{e}(\tau)$, and specify the asymptotic distribution of $\widehat{\rho}_{e}(\tau)$ for large n if the model has been identified correctly. Use this result to suggest whether or not the time series is identified correctly as an ARMA $(1,2)$ process, given the following ten values for $\widehat{\rho}_{e}(\tau)$ from a realization of size $n=75$.

τ	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho}_{e}(\tau)$	0.09	-0.15	0.06	0.00	-0.03	-0.10	-0.07	0.18	0.02	0.01

(e) Apply the Ljung-Box-Pierce portmanteau statistic to test if the time series is identified correctly as an $\operatorname{ARMA}(1,2)$ process.

Question 5

(a) A time series X_{t} is believed to exhibit a seasonal pattern. Define the terms:
(i) the seasonal period s;
(ii) the seasonal difference operator ∇_{s}.

Hence, or otherwise, specify the model equation for the seasonal integrated ARMA (SARIMA) model, denoted SARIMA $(p, d, q) \times(P, D, Q)_{s}$, which may be employed (SARIMA) model, denoted SARIMA $(p, d, q) \times(P, D, Q)_{s}$, which may be employed
to describe the seasonal time series. Describe briefly how this model allows for the possibility of a non-seasonal trend component in addition to seasonality.
(b) Consider quarterly data such that observations

$$
\left\{X_{t-i}, X_{t-4-i}, \ldots, X_{t-4 j-i}, \ldots\right\}
$$

belong to the i th period, where $i=0,1,2,3$. Let E_{t-i} be an exponentially weighted moving average of observations in the i th period, i.e.

$$
E_{t-i}=(1+\theta)\left\{X_{t-i}-\theta X_{t-4-i}+\theta^{2} X_{t-8-i}+\ldots+(-\theta)^{j} X_{t-4 j-i}+\ldots\right\}
$$

where θ is a parameter restricted by $|\theta|<1$.
(i) A seasonal $\operatorname{ARIMA}(0,0,0) \times(0,1,1)_{4}$ model for X_{t} is given by the equation

$$
\nabla_{4} X_{t}=Z_{t}+\theta Z_{t-4}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and θ is a parameter restricted by $|\theta|<1$. Show that $X_{t}(1)=E_{t-3}$ is the best one-step ahead linear predictor.
(ii) Show that

$$
X_{t}(2)=E_{t-2}, X_{t}(3)=E_{t-1} \quad \text { and } X_{t}(4)=E_{t}
$$

gives the m-step ahead best linear predictors $X_{t}(m)$ for $2 \leq m \leq 4$.
(iii) Show that $X_{t}(m)=X_{t}(m-4)$ for all $m \geq 5$.
(iv) Comment on the possibility of the presence of a projected non-seasonal trend component for this model.

